Math 240 Spring 2015 -- More Practice Problems for Exam 1

1. Find *all* solutions of the following equations - or show that there is none:

a)

$$x_1 + x_2 + x_3 - 2x_4 = 0$$

 $x_1 + x_2 + 3x_3 - 2x_4 = 0$

b)

$$x_1 + x_2 = 1$$

$$x_1 - x_2 = 3$$

$$2x_1 + x_2 = 3$$

2. Determine whether the matrix

$$A = \begin{pmatrix} 3 & 5 & 7 \\ 1 & 2 & 3 \\ 2 & 3 & 5 \end{pmatrix}$$

is invertible. Find its inverse if it is.

3. Let A and B be 2-by-2 matrices. We say that A and B commute, if AB = BA. Show that if A and B both commute with

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
,

then A commutes with B also.

4. Use Gaussian elimination to find the values of *b* for which the following linear system has a solution. Find the corresponding solution(s).

$$x_2 + 2x_3 = 4$$

$$x_1 + 2x_2 + 5x_3 = 6$$

$$-x_2 - 2x_3 = b$$

5. Compute the determinant of

$$\begin{pmatrix} 1 & 6 & 11 & 16 & 21 \\ 2 & 7 & 12 & 17 & 22 \\ 3 & 8 & 13 & 18 & 23 \\ 4 & 9 & 14 & 19 & 24 \\ 5 & 10 & 15 & 20 & 25 \end{pmatrix}$$

Hint: Very little computing is needed.

True/False Problems. For each of the following statements determine whether the statement is true or false. Explain your answer.

- 1. Let A be a square matrix. If $A^3 = 0$, then det(A) = 0.
- 2. Let A, B and C be n-by-n matrices. If AB=AC and A is invertible, then B=C.
- 3. Let L be an invertible map from the plane R^2 to itself has the property that it is its own inverse, $L = L^{-1}$, then $L = \pm I$ where I is the identity map.
- 4. If A and B are n-by-n matrices with A invertible, then $(ABA^{-1})^2 = AB^2A^{-1}$.
- 5. Say A is a 4-by-4 matrix for which det(A) = -3. Then det(2A) = -6.
- 6. Let A, B be two real 5-by-5 matrices. Then det(A + B) = det(A) + det(B).
- 7. If the 3-by-3 matrices A, B are both nonsingular, then A+B is also nonsingular.
- 8. If the 4-by-4 matrices A, B are both symmetric, then A+B is also symmetric.
- 9. Let \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} be *non-zero* vectors in \mathbb{R}^3 . It is impossible that \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} are linearly independent.

For the following three questions, consider a system of linear algebraic equations written in matrix form

$$A \cdot \mathbf{x} = \mathbf{b}$$
,

where A is an n-by-n matrix with det(A)=0,

$$\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \in \mathbf{R}^n, \quad \text{and} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} ,$$

 $x_1,...,x_n$ are the unknowns.

- 10. It is impossible that for some vector **b** there is exactly one solution.
- 11. If $\mathbf{b} = \mathbf{0}$, then there are infinitely many solutions.
- 12. For all vectors **b** there is at least one solution.