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MATH 240 – Practice problems for First Midterm Exam - Spring 2015

1. The determinant of the matrix

�
���

2 0 1 0
2 3 3 1

�3 2 1 2
0 1 2 1

�
��� is �6. What is the determinant of the matrix

�
���

�3 2 1 2
4 6 6 2
2 0 1 0
0 1 2 1

�
��� ?

of the matrix

�
���

4 3 4 1
2 3 3 1
0 1 2 1

�3 2 1 2

�
��� ?

of the matrix

�
���

�2 �3 �3 �1
3 �2 �1 �2
0 �1 �2 �1

�2 0 �1 0

�
��� ?

of the matrix

�
���

4 0 2 0
0 1 2 1
2 3 3 1

�3 2 1 2

�
��� ?

The matrix

�
���

�3 2 1 2
4 6 6 2
2 0 1 0
0 1 2 1

�
��� is obtained from the original matrix by swapping the first and

third rows and doubling the second row. The row swap changes the sign of the determinant and
doubling the second row multiplies the determinant by 2. So the determinant of this matrix is
�2p�6q � 12.

The matrix

�
���

4 3 4 1
2 3 3 1
0 1 2 1

�3 2 1 2

�
��� is obtained from the original matrix by swapping the last two rows

and by adding the second row to the first row. The row swap changes the sign of the determinant
and adding the second row to the first row does not change the determinant. So the determinant of
this matrix is �p�6q � 6.

The matrix

�
���

�2 �3 �3 �1
3 �2 �1 �2
0 �1 �2 �1

�2 0 �1 0

�
��� is obtained from the original matrix by multiplying the

whole matrix by �1, and by successively swapping the first row downward until it becomes the last
row (and each of the other rows has moved up one). The negation of the entire matrix involves
multiplying all four rows by �1, so the determinant is multiplied by p�1q4 (i.e., it doesn’t change),
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and there are three swaps altogether, which multiplies the determinant by p�1q3. So the determinant
of this matrix is p�1q4p�1q3p�6q � 6.

The matrix

�
���

4 0 2 0
0 1 2 1
2 3 3 1

�3 2 1 2

�
��� is obtained from the original matrix by multiplying the first row

by 2 and then by successively swapping the bottom row upward until it becomes the second row.
Doubling the first row multiplies the determinant by 2 and the two swaps together multiply the
determinant by p�1q2. So the determinant of this matrix is p�1q2p2qp�6q � �12.

2. For each of the following subsets of the vector space P4 of polynomials of degree less than or
equal to 4, say whether or not it is a (vector) subspace of P4. If it is not a subspace, explain why
not. If it is a subspace, give its dimension and a basis for the subspace.

(a) The set of polynomials in P4 that are even functions (i.e., for which pp�xq � ppxq).

(b) The set of polynomials in P4 that are odd functions (i.e., for which pp�xq � �ppxq).

(c) The set of polynomials in P4 that satisfy pp0q � 1 and pp1q � 2.

(d) The set of polynomials in P4 that satisfy pp0q � 0 and pp1q � 0.

(e) The set of polynomials in P4 that satisfy pp1q � 0, p1p1q � 0 and p2p1q � 0.

(f) The set of polynomials in P4 that satisfy pp1q � 1 and p1p1q � 2.

(a) This is a subspace, and consists of those polynomials whose non-zero terms have even degree.
So it has dimension three, and a basis is t1, x2, x4u.

(b) This is also a subspace, and consists of those polynomials whose non-zero terms have odd
degree. So it has dimension two, and a basis is tx, x3u.

(c) This is not a subspace, since the zero polynomial is not in it.

(d) This is a subspace – if we write a polynomial in P4 as ppxq � a0�a1x�a2x
2�a3x

3�a4x
4, then

the condition pp0q � 0 is simply a0 � 0. And the condition pp1q � 0 says a0� a1� a2� a3� a4 � 0.
So this subspace has dimension 5 � 2 � 3 and a basis is tx� x4 , x2 � x4 , x3 � x4u.

(e) This is a subspace. Write the polynomial ppxq as in part (d), then then condition pp1q � 0
is a0 � a1 � a2 � a3 � a4 � 0, the condition p1p1q � 0 is a1 � 2a2 � 3a3 � 4a4 � 0 and the condition
p2p1q � 0 is 2a2 � 6a3 � 12a4 � 0. The matrix of this system of linear equations is�

� 1 1 1 1 1 0
0 1 2 3 4 0
0 0 2 6 12 0

�
� .

We can go to reduced row-echelon form as follows:�
� 1 1 1 1 1 0

0 1 2 3 4 0
0 0 2 6 12 0

�
� R3Ñ

1
2R3

ÝÝÝÝÝÝÑ

�
� 1 1 1 1 1 0

0 1 2 3 4 0
0 0 1 3 6 0

�
� R1ÑR1�R3ÝÝÝÝÝÝÝÝÝÑ

R2ÑR2�2R3

�
� 1 1 0 �2 �5 0

0 1 0 �3 �8 0
0 0 1 3 6 0

�
�
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R1ÑR1�R2ÝÝÝÝÝÝÝÝÑ

�
� 1 0 0 1 3 0

0 1 0 �3 �8 0
0 0 1 3 6 0

�
�

So a3 and a4 are free variables (so the dimension of the subspace is 2), and a basis is given by$''''&
''''%

�
�����

�1
3

�3
1
0

�
����� ,

�
�����

�3
8

�6
0
1

�
�����

,////.
////-

,

or, more properly (as polynomials): 
�1 � 3x� 3x2 � x3 , �3 � 8x� 6x2 � x4

(
.

A quicker way to do this would be to realize that a polynomial for which pp1q � p1p1q � p2p1q � 0
must have px� 1q3 as a factor. So another basis of the same subspace would be

tpx� 1q3 , xpx� 1q3u � t1 � 3x� 3x2 � x3 , x� 3x2 � 3x3 � x4u.

(f) This is not a subspace, since the zero polynomial is not in it.

3. Consider the matrix Apkq �

�
� 1 1 �2

1 k 0
�1 2 k

�
�.

(a) There are two values of k for which the rank of the matrix Apkq is less than three. What are
they?

(b) For each of those values of k, find a basis for the nullspace of Apkq.

(c) For one of the values of k, it is possible to solve Apkqx � b, where

b �

�
� 0

5
5

�
� .

What is the general solution of this problem for this value of k?

(a) To “determine” the values of k for which the matrix is not invertible (i.e., does not have rank
3), we calculate the determinant as follows:

detApkq � k2 � 0 � 4 � 0 � k � 2k � k2 � 3k � 4 � pk � 4qpk � 1q.

Since the determinant is zero when k � 4 and k � �1, and non-zero otherwise, we conclude that
Apkq has rank 3 provided k R t4,�1u and rankpApkqq   3 for k P t4,�1u.

(b) For k � 4, we can row-reduce:

�
Ap4q 0

�
�

�
� 1 1 �2 0

1 4 0 0
�1 2 4 0

�
� R2ÑR2�R1ÝÝÝÝÝÝÝÝÑ

R3ÑR3�R1

�
� 1 1 �2 0

0 3 2 0
0 3 2 0

�
� R3ÑR3�R2ÝÝÝÝÝÝÝÝÑ

R2Ñ
1
3R2

�
� 1 1 �2 0

0 1 2
3 0

0 0 0 0

�
�
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R1ÑR1�R2ÝÝÝÝÝÝÝÝÑ

�
��

1 0 � 8
3 0

0 1 2
3 0

0 0 0 0

�
��

So the rank of Ap4q is 2, its nullity is 1 and a basis for its nullspace (kernel) is$'&
'%
�
��

8
3

� 2
3

1

�
��
,/.
/- .

Likewise, for k � �1 we can row reduce:

�
Ap�1q 0

�
�

�
� 1 1 �2 0

1 �1 0 0
�1 2 �1 0

�
� R2ÑR2�R1ÝÝÝÝÝÝÝÝÑ

R3ÑR3�R1

�
� 1 1 �2 0

0 �2 2 0
0 3 �3 0

�
� R3ÑR3�

3
2R2

ÝÝÝÝÝÝÝÝÝÑ
R2Ñ�

1
2R2

�
� 1 1 �2 0

0 1 �1 0
0 0 0 0

�
�

R1ÑR1�R2ÝÝÝÝÝÝÝÝÑ

�
� 1 0 �1 0

0 1 �1 0
0 0 0 0

�
�

So the rank of Ap�1q is also 2, its nullity is 1 and a basis for its nullspace (kernel) is$&
%
�
� 1

1
1

�
�
,.
- .

(c) Well, let’s try k � �1 first since that seems easier. We just have to do the same row reduction
we did before, but this time augmented by the right-hand side:�

� 1 1 �2 0
1 �1 0 5

�1 2 �1 5

�
� R2ÑR2�R1ÝÝÝÝÝÝÝÝÑ

R3ÑR3�R1

�
� 1 1 �2 0

0 �2 2 5
0 3 �3 5

�
� R3ÑR3�

3
2R2

ÝÝÝÝÝÝÝÝÝÑ
R2Ñ�

1
2R2

�
��

1 1 �2 0

0 1 �1 5
2

0 0 0 25
2

�
��

and we can already see that this system of equations has no solution, since the third equation says
0 � 25

2 .

So we try the k � 4 case:�
� 1 1 �2 0

1 4 0 5
�1 2 4 5

�
� R2ÑR2�R1ÝÝÝÝÝÝÝÝÑ

R3ÑR3�R1

�
� 1 1 �2 0

0 3 2 5
0 3 2 5

�
� R3ÑR3�R2ÝÝÝÝÝÝÝÝÑ

R2Ñ
1
3R2

�
� 1 1 �2 0

0 1 2
3

5
3

0 0 0 0

�
�

R1ÑR1�R2ÝÝÝÝÝÝÝÝÑ

�
��

1 0 � 8
3 � 5

3

0 1 2
3

5
3

0 0 0 0

�
��

Setting the free variable x3 � 0, we get the particular solution

�
��

� 5
3
5
3

0

�
��. Put this together with the

basis for the nullspace found above to get the general solution:�
� x1

x2

x3

�
� �

�
��

� 5
3
5
3

0

�
��� s

�
��

8
3

� 2
3

1

�
��
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4. For the matrix

M �

�
2 1 0
1 0 1

�
determine the dimension of the subspace of 3-by-3 matrices X for which

MX �

�
0 0 0
0 0 0

�
.

Also give a basis for this subspace.

If we write the matrix X as

�
� x1 x2 x3

x4 x5 x6

x7 x8 x9

�
�, then it looks like we have six conditions on nine

variables:

MX �

�
2x1 � x4 2x2 � x5 2x3 � x6

x1 � x7 x2 � x8 x3 � x9

�
�

�
0 0 0
0 0 0

�
.

So we do get six equations in nine variables, which we write in the order:

x1 � x7 � 0
x2 � x8 � 0

x3 � x9 � 0
2x1 � x4 � 0

2x2 � x5 � 0
2x3 � x6 � 0

Row reduce the matrix corresponding to this system by adding �2 times the first, second and third
rows to the fourth, fifth and sixth rows respectively, and obtain:�

�������

1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 �2 0 0 0
0 0 0 0 1 0 0 �2 0 0
0 0 0 0 0 1 0 0 �2 0

�
�������

There are three free variables (x7, x8 and x9) so the dimension of the nullspace is three, and a basis
is $''''''''''''&

''''''''''''%

�
�������������

�1
0
0
2
0
0
1
0
0

�
�������������

,

�
�������������

0
�1

0
0
2
0
0
1
0

�
�������������

,

�
�������������

0
0

�1
0
0
2
0
0
1

�
�������������

,////////////.
////////////-

.

The corresponding 3-by-3 matrices (which span the space of X’s for which MX � 0) are$&
%
�
� �1 0 0

2 0 0
1 0 0

�
� ,

�
� 0 �1 0

0 2 0
0 1 0

�
� ,

�
� 0 0 �1

0 0 2
0 0 1

�
�
,.
- .
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5. Let S � t1, x, x2u be the standard basis for the vector space P2 of polynomials of degree less
than or equal to 2.

(a) Show that B � t1 � x, 1 � x2, x� x2u is another basis for P2.

(b) What is the change-of-basis matrix PSÐB (in other words how do you go from expressing a
polynomial as a1p1 � xq � a2p1 � x2q � a3px� x2q to expressing it as b1p1q � b2pxq � b3px

2q)?

(c) What is the change-of-basis matrix PBÐS?

(d) What is the matrix the represents the linear mapping that sends ppxq to p1pxq � 2ppxq with
respect to the standard basis S?

(e) What is the matrix that represents the linear mapping in part (d) with respect to the basis
B?

(a) Suppose a1p1 � xq � a2p1 � x2q � a3px� x2q � 0. Expanding this gives us

pa1 � a2q � pa1 � a3qx� pa2 � a3qx
2 � 0,

which would imply a1 � a2 � 0, a1 � a3 � 0 and a2 � a3 � 0. Solve this system by row reduction:�
� 1 1 0 0

1 0 1 0
0 1 1 0

�
� R2ÑR2�R1ÝÝÝÝÝÝÝÝÑ

�
� 1 1 0 0

0 �1 1 0
0 1 1 0

�
� R3ÑR3�R2ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

R2Ñ�R2, R3Ñ
1
2R3

�
� 1 1 0 0

0 1 �1 0
0 0 1 0

�
�

The last matrix is in row echelon form and clearly has rank 3, so the only possible solution is
a1 � a2 � a3 � 0. This shows that the three polynomials are linearly independent, so they must be
a basis of the three-dimensional space P2.

(b) We did all the computation we need in part (a), and we can see that b1 � a1�a2, b2 � a1�a3
and b3 � a2 � a3, so the change of basis matrix PSÐB is given by:�

� b1
b2
b3

�
�

S

�

�
� 1 1 0

1 0 1
0 1 1

�
�
�
� a1

a2
a3

�
�

B

(c) The change of basis matrix PBÐS is the inverse of PSÐB , which we compute by row-reduction:�
� 1 1 0 1 0 0

1 0 1 0 1 0
0 1 1 0 0 1

�
� R2ÑR2�R1ÝÝÝÝÝÝÝÝÑ

�
� 1 1 0 1 0 0

0 �1 1 �1 1 0
0 1 1 0 0 1

�
� R3ÑR3�R2ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

R2Ñ�R2, R3Ñ
1
2R3

�
� 1 1 0 1 0 0

0 1 �1 1 �1 0
0 0 1 � 1

2
1
2

1
2

�
�

R2ÑR2�R3ÝÝÝÝÝÝÝÝÑ

�
��

1 1 0 1 0 0

0 1 0 1
2 � 1

2
1
2

0 0 1 � 1
2

1
2

1
2

�
�� R1ÑR1�R2ÝÝÝÝÝÝÝÝÑ

�
��

1 0 0 1
2

1
2 � 1

2

0 1 0 1
2 � 1

2
1
2

0 0 1 � 1
2

1
2

1
2

�
��

We conclude that PBÐS �

�
��

1
2

1
2 � 1

2
1
2 � 1

2
1
2

� 1
2

1
2

1
2

�
��.
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(d) If ppxq � b1� b2x� b3x
2 (using the standard basis), then p1pxq � 2ppxq � p2b1� b2q � p2b2�

2b3qx� 2b3x
2. So the matrix of this linear transformation with respect to the standard basis is�

� 2 1 0
0 2 2
0 0 2

�
� ,

since we will have �
� 2b1 � b2

2b2 � 2b3
2b3

�
�

S

�

�
� 2 1 0

0 2 2
0 0 2

�
�
�
� b1

b2
b3

�
�

S

.

(e) To get the matrix of the same mapping with respect to the B basis, we could calculate it
directly, or we could take advantage of the previous part by starting with our polynomial expressed
in the B basis as a1p1 � xq � a2p1 � x2q � a3px� x2q, or equivalently as the vector�

� a1
a2
a3

�
�

B

,

translate this into the standard basis by multiplying by the change of basis matrix PSÐB , then
using the matrix from part (d) which carries out the linear map using the standard basis, and then
multiplying the result by the change of basis matrix PBÐS to express the result in terms of the B
basis. Thus, the matrix of the transformation with respect to the B basis is

PBÐS

�
� 2 1 0

0 2 2
0 0 2

�
�PSÐB �

�
��

1
2

1
2 � 1

2
1
2 � 1

2
1
2

� 1
2

1
2

1
2

�
��
�
� 2 1 0

0 2 2
0 0 2

�
�
�
� 1 1 0

1 0 1
0 1 1

�
�

�

�
��

1
2

1
2 � 1

2
1
2 � 1

2
1
2

� 1
2

1
2

1
2

�
��
�
� 3 2 1

2 2 4
0 2 2

�
�

�

�
��

5
2 1 3

2
1
2 1 � 1

2

� 1
2 1 5

2

�
��

This last matrix tells us that if

ppxq � a1p1 � xq � a2p1 � x2q � a3px� x2q

then

p1pxq � 2ppxq � p
5

2
a1 � a2 �

3

2
a3qp1� xq � p

1

2
a1 � a2 �

1

2
a3qp1� x2q � p�

1

2
a1 � a2 �

5

2
a3qpx� x2q,

which you can check.
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6. (a) Can the vector

�
���

2
1
5
0

�
��� be represented as a linear combination of the vectors

�
���

1
0
2
1

�
���,

�
���

1
1
6
2

�
���,

and

�
���

0
0
1
1

�
��� ? If not, explain why not. If so, how? (Be precise – if there is more than one way to do

it, give all possible ways).

(b) Same question, but for the vector

�
���

2
1
4
1

�
���

(a) The question is asking whether we can find values x1, x2, x3 such that

x1

�
���

1
0
2
1

�
���� x2

�
���

1
1
6
2

�
���� x3

�
���

0
0
1
1

�
��� �

�
���

2
1
5
0

�
��� ,

in other words, we need to solve the system

x1 � x2 � 2
x2 � 1

2x1 � 6x2 � x3 � 5
x1 � 2x2 � x3 � 0

which we do by row-reduction. In fact, looking ahead to part (b), we’ll solve that system at the
same time:�
���

1 1 0 2 2
0 1 0 1 1
2 6 1 5 4
1 2 1 0 1

�
��� R3ÑR3�2R1ÝÝÝÝÝÝÝÝÝÑ

R4ÑR4�R1

�
���

1 1 0 2 2
0 1 0 1 1
0 4 1 1 0
0 1 1 �2 �1

�
��� R3ÑR3�4R2ÝÝÝÝÝÝÝÝÝÑ

R4ÑR4�R2

�
���

1 1 0 2 2
0 1 0 1 1
0 0 1 �3 �4
0 0 1 �3 �2

�
���

R4ÑR4�R3ÝÝÝÝÝÝÝÝÑ

�
���

1 1 0 2 2
0 1 0 1 1
0 0 1 �3 �4
0 0 0 0 2

�
��� R1ÑR1�R2ÝÝÝÝÝÝÝÝÑ

�
���

1 0 0 1 1
0 1 0 1 1
0 0 1 �3 �4
0 0 0 0 2

�
���

From this, we see that the reduced row echelon form for the problem in part (a) is�
���

1 0 0 1
0 1 0 1
0 0 1 �3
0 0 0 0

�
���

which tells us that x1 � 1, x2 � 1 and x3 � �3 is the only solution (since there are no free variables),
and we can write �

���
1
0
2
1

�
����

�
���

1
1
6
2

�
���� 3

�
���

0
0
1
1

�
��� �

�
���

2
1
5
0

�
��� .
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(b) From the calculation above, the reduced row echelon form for this problem is�
���

1 0 0 1
0 1 0 1
0 0 1 �4
0 0 0 2

�
��� .

But this system has no solutions (the last equation says 0 � 2) so we conclude that there is no way

to write the vector

�
���

2
1
4
1

�
��� as a linear combination of the vectors

�
���

1
0
2
1

�
���,

�
���

1
1
6
2

�
���, and

�
���

0
0
1
1

�
���.

7. Let A �

�
1 0 �1 �2 0 0

�2 �1 0 2 0 �1

�
.

(a) Explain why the matrix AT pAAT q�1 would be a right inverse for A, provided it exists.

(b) Calculate AT pAAT q�1 and show that it is a right inverse for A. (Sorry about the fractions!)

(a) “If it exists” means “if pAAT q�1 exists” — assuming that it does, we can show that the given
matrix is a right inverse for A by multiplying A on the right by AT pAAT q�1:

ArAT pAAT q�1s � pAAT qpAAT q�1 � I

since the product of a matrix with its inverse is the identity (the 2-by-2 identity matrix in this case).

(b) First we calculate AAT :

AAT �

�
1 0 �1 �2 0 0

�2 �1 0 2 0 �1

�
�
�������

1 �2
0 �1

�1 0
�2 2

0 0
0 �1

�
�������
�

�
6 �6

�6 10

�

Next we calculate pAAT q�1 by row reduction:�
6 �6 1 0

�6 10 0 1

�
R2ÑR2�R1ÝÝÝÝÝÝÝÝÑ
R1Ñ

1
6R1

�
1 �1 1

6 0
0 4 1 1

�
R2Ñ

1
4R2

ÝÝÝÝÝÝÑ

�
1 �1 1

6 0

0 1 1
4

1
4

�

R1ÑR1�R2ÝÝÝÝÝÝÝÝÑ

�
1 0 5

12
1
4

0 1 1
4

1
4

�

So pAAT q�1 �

�
5
12

1
4

1
4

1
4

�
and so a right inverse for A is

AT pAAT q�1 �

�
�������

1 �2
0 �1

�1 0
�2 2

0 0
0 �1

�
�������
�

5
12

1
4

1
4

1
4

�
�

�
���������

� 1
12 � 1

4

� 1
4 � 1

4

� 5
12 � 1

4

� 1
3 0

0 0

� 1
4 � 1

4

�
���������
.
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(You can check that this is correct by multiplying A on the right by it and obtaining the 2-by-2
identity matrix.)

Extra problems

1. Find all solutions of the following equations — or show that there is none.

(a)
x1 � x2 � x3 � 2x4 � 0
x1 � x2 � 3x3 � 2x4 � 0

(b)
x1 � x2 � 1
x1 � x2 � 3
2x1 � x2 � 3

(a) These are homogeneous equations, so the set of solutions is a subspace of R4. To find a basis
for it, we start with the augmented matrix of the system and row-reduce:�

1 1 1 �2 0
1 1 3 �2 0

�
R2ÑR2�R1ÝÝÝÝÝÝÝÝÑ

�
1 1 1 �2 0
0 0 2 0 0

�
R2Ñ

1
2R2

ÝÝÝÝÝÝÑ

�
1 1 1 �2 0
0 0 1 0 0

�

There are two free variables, x2 and x4. Setting each equal to 1 and the other 0 in turn, we get the
following basis for the set of solutions:

$''&
''%

�
���

2
0
0
1

�
��� ,

�
���

�1
1
0
0

�
���
,//.
//-

(b) These are inhomogeneous equations, and more equations than unknowns, so there may be
no solutions. But we start again with the augmented matrix of the system and row-reduce:�
� 1 1 1

1 �1 3
2 1 3

�
� R2ÑR2�R1ÝÝÝÝÝÝÝÝÝÑ

R3ÑR3�2R1

�
� 1 1 1

0 �2 2
0 �1 1

�
� R2Ñ�

1
2R2

ÝÝÝÝÝÝÝÝÑ
R3ÑR3�R2

�
� 1 1 1

0 1 �1
0 0 0

�
� R1ÑR1�R2ÝÝÝÝÝÝÝÝÑ

�
� 1 0 2

0 1 �1
0 0 0

�
�

The system is consistent, since the last row just says 0 � 0, and there are no free variables. Therefore

the unique solution is

�
x1

x2

�
�

�
2

�1

�
.

2. Determine whether the matrix �
� 3 5 7

1 2 3
2 3 5

�
�

is invertible. Find its inverse if it is.
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The determinant of the matrix is

30 � 30 � 21 � 27 � 25 � 28 � 1

Which is not zero, so the matrix is invertible (and we don’t expect fractions in the inverse!). We
find the inverse by row reduction:�

� 3 5 7 1 0 0
1 2 3 0 1 0
2 3 5 0 0 1

�
� R1ØR2ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

R2ÑR2�3R1, R3ÑR3�2R1

�
� 1 2 3 0 1 0

0 �1 �2 1 �3 0
0 �1 �1 0 �2 1

�
�

R3ÑR3�R2ÝÝÝÝÝÝÝÝÑ
R2Ñ�R2

�
� 1 2 3 0 1 0

0 1 2 �1 3 0
0 0 1 �1 1 1

�
� R2ÑR2�2R3ÝÝÝÝÝÝÝÝÝÑ

R1ÑR1�3R3

�
� 1 2 0 3 �2 �3

0 1 0 1 1 �2
0 0 1 �1 1 1

�
�

R1ÑR1�2R2ÝÝÝÝÝÝÝÝÝÑ

�
� 1 0 0 1 �4 1

0 1 0 1 1 �2
0 0 1 �1 1 1

�
�

So the inverse of the matrix is

�
� 1 �4 1

1 1 �2
�1 1 1

�
�.

3. Let A and B be 2-by-2 matrices. We say that A and B commute, if AB � BA. Show that if A
and B both commute with �

0 1
�1 0

�

then A commutes with B also.

We begin by characterizing the matrices that commute with J �

�
0 1

�1 0

�
. If A �

�
a11 a12
a21 a22

�
is such a matrix, then AJ � JA � 0, that is to say

AJ � JA �

�
a11 a12
a21 a22

� �
0 1

�1 0

�
�

�
0 1

�1 0

� �
a11 a12
a21 a22

�

�

�
�a12 a11
�a22 a21

�
�

�
a21 a22

�a11 �a12

�

�

�
�a12 � a21 a11 � a22
a11 � a22 a21 � a12

�

�

�
0 0
0 0

�

This means that A commutes with J if and only if a21 � �a12 and a11 � a22, so if A and B both
commute with J then they must be of the form:

A �

�
p q

�q p

�
and B �

�
r s

�s r

�
.
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And then we can check that A and B commute with each other

AB �BA �

�
p q

�q p

� �
r s

�s r

�
�

�
r s

�s r

� �
p q

�q p

�

�

�
pr � qs ps� qr

�ps� qr pr � qs

�
�

�
pr � qs ps� qr

�ps� qr pr � qs

�

�

�
0 0
0 0

�

(You might notice the similarity between the multiplication of A and B and the multiplication of
the complex numbers p� iq and r � is).

4. Use Gaussian elimination to find the values of b for which the following linear system has a
solution. Find the corresponding solution(s).

x2 � 2x3 � 4
x1 � 2x2 � 5x3 � 6

� x2 � 2x3 � b

We start with the augmented matrix of the system and row-reduce:�
� 0 1 2 4

1 2 5 6
0 �1 �2 b

�
� R1ØR2ÝÝÝÝÝÑ

�
� 1 2 5 6

0 1 2 4
0 �1 �2 b

�
� R3ÑR3�R2ÝÝÝÝÝÝÝÝÑ

�
� 1 2 5 6

0 1 2 4
0 0 0 4 � b

�
�

Since the third equation now reads 0 � 4 � b, there is no solution unless b � �4. In the case that
b � �4, we continue the row reduction as follows:�

� 1 2 5 6
0 1 2 4
0 0 0 0

�
� R1ÑR1�2R2ÝÝÝÝÝÝÝÝÝÑ

�
� 1 0 1 �2

0 1 2 4
0 0 0 0

�
�

This shows that x3 is the only free variable, a particular solution of the system is

�
� �2

4
0

�
� (found by

setting x3 � 0, and a basis for the solution of the associated homogeneous system (found by setting

x3 � 1 and the right side equal to zero) is

$&
%
�
� �1

�2
1

�
�
,.
-. The general solution of the problem in this

case is �
� x1

x2

x3

�
� �

�
� �2 � s

4 � 2s
s

�
� .

5. Compute the determinant of �
�����

1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

�
�����
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Hint: Very little computing is needed.

If you subtract the first row from the second row, then the second row will become r1, 1, 1, 1, 1s
(and the determinant does not change). Then subtract the third row from the fourth row and the
fourth row will be r1, 1, 1, 1, 1s and the determinant is still the same as that of the original matrix.
But the determinant of a matrix with two identical rows is zero, so the determinant of the original
matrix is zero.

True/False questions:

1. Let A be a square matrix. If A3 � 0 then detpAq � 0.

True. Since detpA3q � pdetpAqq3, we have that the numbers pdetpAqq3 � 0, and so detpAq � 0.

2. Let A, B and C be n-by-n matrices. If AB � AC and A is invertible, then B � C.

True. Multiply the given equation by A�1 on the left. So A�1AB � A�1AC, i.e., IB � IC, i.e,
B � C.

3. Let L be an invertible map from the plane R2 to itself that has the property that it is its own
inverse. Then L � �I, where I is the identity map.

False. L could be the map represented by the matrix

�
1 0
0 �1

�
, which is reflection across the

x-axis.

4. If A and B are n-by-n matrices with A invertible, then pABA�1q2 � AB2A�1.

True. A (careful!) computation: pABA�1q2 � pABA�1qpABA�1q � ABpA�1AqBA�1 �
ABIBA�1 � AB2A�1.

5. Say A is a 4-by-4 matrix for which detpAq � �3. Then detp2Aq � �6.

False. The matrix 2A is obtained from A by multiplying each of its four rows by 2, and each time
a row is multiplied by 2 the determinant is multiplied by 2. So detp2Aq � 24 detpAq � 24p�6q � �96
in this case.

6. Let A, B be two real 5-by-5 matrices. Then detpA�Bq � detpAq � detpBq.

False. Choose A and B both to be the identity matrix. Then detpAq � detpBq � 1 but
detpA�Bq � 32.

7. If the 3-by-3 matrices A and B are both nonsingular, then A�B is also nonsingular.

False. Choose A � I and B � �I, for instance.

8. If the 4-by-4 matrices A and B are both symmetric, then A�B is also symmetric.

True. If aij � aji and bij � bji then clearly aij � bij � aji � bji.
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9. Let a, b, c and d be non-zero vectors in R3. It is impossible that a, b, c and d are linearly
independent.

True. Since R3 is three-dimensional, the maximum number of linearly independent vectors is
three.

For the following three questions, consider a system of linear algebraic equations written in
matrix form

Ax � b,

where A is an n-by-n matrix with detpAq � 0,

b �

�
����

b1
b2
...
bn

�
���� P Rn and x �

�
����

x1

x2

...
xn

�
���� ,

x1, . . . , xn are the unknowns.

10. It is impossible that for some vector b there is exactly one solution.

True. Since detpAq � 0, the rank of A is less than n, so there must always be at least one free
variable (i.e., the nullspace of A must be at least one-dimensional, and you can add any non-zero
member of the nullspace of A to a particular solution of Ax � b to get another solution).

11. If b � 0, then there are infintely many solutions.

True. This is the b � 0 case of question 10. There is at least one solution to Ax � 0, since
x � 0 is a solution, and then the set of solutions (i.e., the nullspace of A) is at least one-dimensional.

12. For all vectors b there is at least one solution.

False. Since the rank of A is less than n, and the set of vectors b for which there is a solution
has dimension equal to the rank of A, there will be vectors in Rn for which the problem cannot be
solved.


