Math 240, Spring 2020

Homework 1

DUE: THURSDAY, JANUARY 23

This week. Read 2.3-2.5 in the book.

1. In the class, we discussed the following system of equations related to Google PageRank.

$$x_{1} = \frac{1}{2}x_{2} + x_{4},$$

$$x_{2} = \frac{1}{3}x_{1} + \frac{1}{2}x_{3},$$

$$x_{3} = \frac{1}{3}x_{1},$$

$$x_{4} = \frac{1}{3}x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3}$$

Use row reduction to find the following solution

$$x_1 = \frac{4}{3}x_4, x_2 = \frac{2}{3}x_4, x_3 = \frac{4}{9}x_4.$$

- 2. Consider vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
 - a) Draw a picture to explain why there are no numbers $c_1, c_2 \in \mathbb{R}$ such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{b}$.
 - b) Reinterpret the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{b}$ as a system $A\mathbf{x} = \mathbf{b}$ of three equations in two variables (c_1 and c_2) and reinterpret your answer in this notation. What are *A* and \mathbf{x} ?
- 3. Consider the vectors $\mathbf{v} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -2\\-1\\1 \end{bmatrix}$ in \mathbb{R}^3 .
 - a) Using the cross product, find a normal vector to the plane containing v and w.
 - b) By solving a system of equations, find a normal vector to the plane containing **v** and **w**. [Hint: recall that two vectors are orthogonal precisely when their dot product is zero.]
- 4. Consider the vectors $\mathbf{u} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2\\-1\\0\\0 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}$ in \mathbb{R}^4 . Solve a system of equations

to find a normal vector to the hyperplane in \mathbb{R}^4 containing **u**, **v** and **w**. Note: there is no good generalization of the cross product to higher dimensions.