Homework 7

DUE: THURSDAY, MARCH 19

This week. Read chapter 7.

Rank-Nullity theorem and ODE

- 1. Let $V = \{f : \mathbb{R} \to \mathbb{R} : f'' + \frac{c}{m}f' + \frac{k}{m}f = 0\}$ be the vector space of functions satisfying the differential equation for the damped spring-mass system (cf. HW5).
 - a) Show that the function $T: V \to \mathbb{R}^2$ by $T(f) = \begin{bmatrix} f(0) \\ f'(0) \end{bmatrix}$ is a linear transformation.
 - b) Show that ker $T = {\mathbf{v} \in V : T\mathbf{v} = 0}$ consists only of the zero function (you will need to use the result of part c) from the problem in HW5).
 - c) Show that *V* is *at most* two dimensional by Rank-Nullity theorem.

COMMENT: c) means the set of solutions is not too big. In particular, once two linearly independent solutions are known, by taking linear combinations, we have found *all* of the solutions!

Eigenvalues and Eigenvectors

- 2. True or False (Explain your answer briefly in either case)
 - a) If two matrices *A* and *B* have the same characteristic polynomial, then *A* and *B* have exactly the same set of eigenvalues.
 - b) If two matrices *A* and *B* have the same characteristic polynomial, then *A* and *B* have exactly the same set of eigenvectors.
 - c) Each eigenspace of an $n \times n$ matrix is a subspace of \mathbb{R}^n .
 - d) It is possible for a square matrix A to have infinitely many different eigenvectors.
 - e) A linear combination of a set of eigenvectors of a matrix A is again an eigenvector of A.
 - f) If a matrix *A* has a repeated eigenvalue, then it is defective.
 - g) An $n \times n$ matrix A is nondefective if it has n different eigenvectors.
 - h) If v is an eigenvector of A, then v is also an eigenvector of A^5 .
 - i) If A^2 has eigenvalue 9, must 3 or -3 be an eigenvalue of A?
 - j) The eigenvalues of A and A^T are the same.
 - k) 0 can be an eigenvalue of a matrix.

3. Find all eigenvalues as well as the dimension of each eigenspace for the following matrix.

[1	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0
	0	0	4	1	0	0	0	0
	0	0	0	4	1	0	0	0
	0	0	0	0	4	0	0	0
	0	0	0	0	0	4	0	0
	0	0	0	0	0	0	2	1
	0	0	0	0	0	0	0	2

- 4. Write down a simple 3×3 matrix with eigenvalues 3, 4, and 7.
- 5. The linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ with matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ reflects each vector across the line y = x. By arguing geometrically, determine all eigenvalues and eigenvectors of A.
- 6. Determine all eigenvalues and corresonding eigenvectors of the given matrix.

a)
$$\begin{bmatrix} 1 & 6 \\ 2 & -3 \end{bmatrix}$$
.
b) $\begin{bmatrix} 7 & -8 & 6 \\ 8 & -9 & 6 \\ 0 & 0 & -1 \end{bmatrix}$
c) $\begin{bmatrix} 1 & 1/4 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/4 & 1 \end{bmatrix}$.

Diagonalization

7. Determine whether the given matrix A is diagonalizable. Where possible, find a matrix S such that $S^{-1}AS$ is diagonal, with the eigenvalues along the diagonal.

a)
$$\begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix}$$
.
b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 7 \\ 1 & 1 & -3 \end{bmatrix}$.

8. Is the matrix $A = \begin{bmatrix} 2020 & 2020 & 2020 & 2020 & 2020 \\ 2020 & 2020 & 2020 & 2020 & 2020 \\ 2020 & 2020 & 2020 & 2020 & 2020 \\ 2020 & 2020 & 2020 & 2020 & 2020 \\ 2020 & 2020 & 2020 & 2020 & 2020 \end{bmatrix}$ diagonalizable? If so, exhibit matrices

S and D, where D is diagonal, such that $A = SDS^{-1}$. Otherwise, explain why A is defective.

Applied Problems

- 9. This is a continuation of the genetics problem from HW6. Let M be the matrix given there.
 - a) Diagonalize M.
 - b) For any $n \in \mathbb{N}$, compute all the entries in M^n .
 - c) Evaluate $\lim_{n\to\infty} M^n$ and comment on the limiting distribution $\lim_{n\to\infty} \mathbf{x}^{(n)}$.