Subsyales: Oclosed ander addition De closed under scalar ma [tip]icapon Warm mp. Fact , OEW. OfAll reduced now echelon form y=w $N_{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in W, \qquad 2 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ D {All row echelon form 9 $No. \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 \end{bmatrix}$ = [001] FW. $\begin{array}{c} (3) & \left(All \quad solupions \quad t_{0} \\ & f'' + 3f = 1. \end{array} \right) = w \end{array}$

Homogeneous linear systems give subspaces Ax= 9

Ex: What is her
$$\begin{bmatrix} 123\\ & 76 \end{bmatrix}$$
?
Looking for solutions of
 $Av=0$.
 $\begin{bmatrix} 123\\ & 0 \end{bmatrix}$
 $\begin{bmatrix} vvv \\ & rb \\ & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 12 \\ & 0 \end{bmatrix}$

M: O For any V, WF hurA. AV = 0, AW=0 A (V+W)= AV+AW=0

SO VEWEhrA.

$$\Theta$$
 For any UE kurA. CER.
 $A(cv) = c(Av) = 0$
 $So CV E herA.$

Application of subspaces to
$$OOE$$
.
 $E_X: \{f \mid f'' + f = 0, f' = W$
Find solutions sinx, cosx.
then any linear combination
 $C_1 Sinx + C_2 cosx$ is a solution
because W is a subspace.

$$\begin{aligned} & \text{Span.} \\ & \text{Pefn: Given } V_1 \dots V_k \in V \\ & \text{the spon of } v_1 \dots v_k \text{ denote by} \\ & \text{span}(V_1 \dots V_k) \text{ is the set} \\ & \text{span}(V_1 \dots V_k) = \{G_1 Y + G_1 V_2 + G_1 V_3 + \dots \\ & + C_k V_k \mid C_1 \dots C_k \in P \\ \\ & \frac{C_1 V_1 + \dots + C_k V_k}{(V_1 + \dots + C_k V_k)} \text{ linear combination of} \\ & V_1 \dots V_k \\ \hline \\ & \text{Thm : Span}(V_1 \dots V_k) \text{ is a subspace of } V \\ & \text{Pf: } O \quad V = C_1 V_1 + \dots C_k V_k \in V \\ & w = d_1 V_1 + \dots + d_k V_k \in V \\ & V + w = (C_1 + d_1) V_1 + \dots + (C_k + d_k) V_k \in V \\ & \text{Constant of } V \\ & \text{Span } (V_1 - V_k) = (C_k + V_1 + \dots + (C_k + C_k) V_k \\ & \text{Span } V = C_1 V_1 + \dots + (C_k + C_k) V_k \\ & \text{Span } V = C_1 V_1 + \dots + (C_k + C_k) V_k \\ & \text{Span } V = C_1 V_1 + \dots + (C_k + C_k) V_k \\ & \text{Span } V = C_1 V_1 + \dots + (C_k + C_k) V_k \\ & \text{Span } V = C_1 V_1 + \dots + C_k V_k \\ & \text{Span } V = C_1 V_1 + \dots +$$

Question: Is WE Span (V, Ve)) $f_{X}: \left(\begin{array}{c} 5 \\ 0 \end{array}\right) = \left(\begin{array}{c} -1 \\ 2 \\ 0 \end{array}\right) = \left(\begin{array}{c} -1 \\ 2 \\ 0 \end{array}\right) = \left(\begin{array}{c} 2 \\ 3 \\ 0 \end{array}\right) = \left(\begin{array}{c} 2 \\$ Does there exist C1, C2 E1K Such that $\binom{C_{1}}{\binom{2}{3}} + \binom{C_{2}}{\binom{5}{6}} = \binom{-1}{\binom{2}{3}}$ $(=) \begin{bmatrix} 1 & \varphi \\ 2 & J \end{bmatrix} \begin{bmatrix} \zeta \\ \zeta \\ \zeta \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 6 \end{bmatrix}$ row reduce; [14 -1] 25-2] 360] How about [y]

