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This exam contains 8 pages (including this cover page) and 6 questions.

Total of points is 120.

e Check your exam to make sure all 8 pages are present.

e You may use writing implements on both sides of a sheet of 5”x7” paper.

NO CALCULATORS.

Show all work, clearly and in order, if you want to get full credit. I reserve the right

to take off points if I cannot see how you arrived at your answer (even if your final

answer is correct).

Good luck!

Grade Table (for teacher use only)

Question | Points | Score
1 20
2 20
3 20
4 20
5 20
6 20
Total: 120
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1. (20 points) 1. Compute the Fourier cosine series for the function f(x) = x* on the

interval [0, 7]. Fully simplify your answer. Hint:

2nz cos(nz) + (=2 + n’x?) sin(nx)

n3

/x2 cos(nz) dx =

2. Does the Fourier cosine series converge to the function f at the point z = 07 Justify
your answer.

3. Sketch the values of the Fourier cosine series of f on the interval [—m, 27|, marking
any points of discontinuity.

4. Demonstrate from your calculations that
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2. (20 points) The displacement of a string u(x,t), 0 <z < L, t > 0 satisfies the following
wave equation
U = SUgy — U
with boundary conditions u(0,t) = 0, u(L,t) = 0 and initial conditions u(z,0) = f(x)
and u(z,0) = g(z). Find the solution u(x,t).
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3. (20 points) Consider the boundary value problem

d’¢  do
2 _

and
¢(1) = ¢(e) = 0.

Find the eigenvalues and eigenfunctions.
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4. (20 points) 1. Write the following boundary value problem of ¢(x)
22¢" 4+ 20¢' + Xp = 0,1 <2 <3,6(1) = ¢(3) = 0

in the standard Sturm—Liouville form.
2. Is this a regular eigenvalue problem? Why?
3. Show that all the eigenvalue A > 0.
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5. (20 points) Solve the 2D wave equation on rectangle 2 = [0,4] x [0, 9]
Uy = AU

with boundary conditions wu(z,y,t) = 0 on the boundary 02 and initial conditions
u(zx,y,0) = sin(mx) sin(7wy) and w(x,y,0) = 0.
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6. (20 points) Consider the heat equation of the temperature u(x,y,t) on a bounded 2D
region {2
w=Au—u, (r,y) € Q,t>0

with boundary condition u|sq = 0

1. Let

B0 = [ [ (o, y.t)) dudy,
Q
Show that the function E(t) is nonincreasing, in other words

d
—FE(t) <0.
dt () =
2. Use the function E(t) to show that the solution with fixed initial condition u(z,y,0) =

f(z,y) is unique.



