
Math 241 Name:
Fall 2019
Midterm 2
10/31/2019
Time Limit: 80 Minutes ID

“My signature below certifies that I have complied with the University of Pennsylvania’s
Code of Academic Integrity in completing this”

Signature
This exam contains 10 pages (including this cover page) and 6 questions.

Total of points is 120.

• Check your exam to make sure all 10 pages are present.

• You may use writing implements on both sides of a sheet of 5”x7” paper.

• NO CALCULATORS.

• Show all work, clearly and in order, if you want to get full credit. I reserve the right
to take o↵ points if I cannot see how you arrived at your answer (even if your final
answer is correct).

• Good luck!

Grade Table (for teacher use only)

Question Points Score

1 20

2 20

3 20

4 20

5 20

6 20

Total: 120
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Boundary value problems:
�00(x) = ���(x)

Orthogonality
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1. (20 points) 1. Compute the Fourier sine series for the function f(x) = x on the inter-
val [0, ⇡]. Fully simplify your answer. Hint:

Z
x sin(nx) dx =

�nx cos(nx) + sin(nx)

n2

2. Does the Fourier sine series converge to the function f at the point x = 0? Justify
your answer.

3. Sketch the values of the Fourier sine series of f on the interval [�⇡, 2⇡], marking
any points of discontinuity.

4. Demonstrate from your calculations that

1� 1

3
+

1

5
� 1

7
+ · · · = ⇡

4
.

Hint: use f(⇡2 ).

1 fix Ian Sinha

an got xsinnx

nxusnxtsi.mx q

n 11
n ensnt

ah c is c 2
n

2 Yes the odd extension of on
E Ti Ti is fix _x



4 f I It
I tD 2

sin n

Th Et I It
so I I t f f t I



Math 241 Midterm 2 - Page 4 of 10 10/31/2019

2. (20 points) Solve 1D wave equation

utt = uxx � u, 0  x  L, t � 0

with boundary conditions ux(0, t) = 0 and ux(L, t) = 0 and initial conditions u(x, 0) =
f(x) and ut(x, 0) = g(x).
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3. (20 points) Let ⌦ be a bounded region in 2D plane, which contains the square [0, L]⇥
[0, L] and is contained in the rectangle [�L, 2L]⇥ [�L, 3L]. Let �1 be the lowest eigen-
value of Laplacian

��(x, y) + ��(x, y) = 0

with Dirichlet boundary condition �|@⌦ = 0. Find m1 and m2 such that m1  �1  m2.

We use the fact that
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4. (20 points) 1. Write the following boundary value problem in the standard Sturm-
Louville form

x2�00 + 3x�0 � 5x�+ �� = 0, 1  x  3, �0(1) = 0, �(3) = 0

2. Is this a regular Sturm-Louville problem? Justify your answer.

3. Show that all the eigenvalues � � 5. Is � = 5 an eigenvalue?
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5. (20 points) Solve the 3D Laplace equation

@2u

@x2
+

@2u

@y2
+

@2u

@z2
= 0

on a cube [0, L]⇥ [0, L]⇥ [0, L] assuming

u(0, y, z) = 0, u(L, y, z) = 0, u(x, 0, z) = 0, u(x, L, z) = 0,

u(x, y, 0) = 0, u(x, y, L) = f(x, y)
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6. (20 points) Consider the 2D wave equation on a bounded region ⌦

utt = �u� 3u

with Dirichlet boundary condition that u(x, y, t) = 0 on the boundary of ⌦.

1. The energy function E(t) is defined by

E(t) =
1

2

ZZ

⌦

(ut)
2 + |ru|2 + 3u2 dxdy.

Show that E(t) is a constant.

Hint: integration by parts
ZZ
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f�g =
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ZZ

⌦

hrf,rgi

Here @g
@n is the directional derivative of g in outward normal direction n.

2. Use this fact to show the uniqueness of solution with fixed initial conditions u(x, y, 0) =
f(x, y) and ut(x, y, 0) = g(x, y).
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Draft 1:

If you use this page and want it looked at, then you must indicate so on the page with the
original problem on it. Make sure you label your work with the corresponding problem
number.
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Draft 2:

If you use this page and want it looked at, then you must indicate so on the page with the
original problem on it. Make sure you label your work with the corresponding problem
number.


