HW 10 Solutions

23rd April 2019 at 1:02pm

Problem 1.

Prove that $\mathbb{Z}[\sqrt{-2}]$ is a PID.

Solution.

It suffices to show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain with the size function

$$\sigma: \mathbb{Z}[\sqrt{-2}] o \mathbb{Z}[\sqrt{-2}]: a + b\sqrt{-2} \mapsto a^2 + 2b^2.$$

Let $x,y\in\mathbb{Z}[\sqrt{-2}]$ with y nonzero. Then

$$x/y=a+b\sqrt{-2}\in \mathbb{Q}[\sqrt{-2}]$$

for some $a,b\in\mathbb{Q}.$ Choose $c,d\in\mathbb{Z}$ such that $|a-c|\leq 1/2,|b-d|\leq 1/2.$ Then

$$\sigma\left(rac{x}{y}-(c+d\sqrt{-2})
ight)=\sigma\left((a-c)+(b-d)\sqrt{-2}
ight)\leq \left(1/2
ight)^2+2\left(1/2
ight)^2=3/4.$$

Since σ is multiplicative,

$$\sigma(x-(c+d\sqrt{-2})y)\leq (3/4)\cdot\sigma(y)<\sigma(y).$$

Therefore $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain with the size function $\sigma.$

 \otimes

Problem 2.

Decide whether or not $x^4 + 6x^3 + 9x + 3$ is irreducible in $\mathbb{Q}[x]$.

Solution.

It is irreducible over ${\mathbb Q}$ by applying Eisenstein's criterion at the prime p=3.

Problem 3.

Factor the integral polynomial $x^5 + 2x^4 + 3x^3 + 3x + 5$ in $\mathbb{F}_2[x], \mathbb{F}_3[x], \mathbb{Q}[x]$.

Solution.

Over \mathbb{F}_2 , the polynomial $x^5 + 2x^4 + 3x^3 + 3x + 5$ factors as $(x + 1)(x^4 + x^3 + 1)$. The quartic has no roots and no quadratic factors over \mathbb{F}_2 and so is irreducible.

Over \mathbb{F}_2 , the polynomial $x^5 + 2x^4 + 3x^3 + 3x + 5$ factors as $(x + 1)^2(x^3 + 2x + 2)$. The cubic has no roots and so is irreducible.

Over \mathbb{Q} , the polynomial $x^5 + 2x^4 + 3x^3 + 3x + 5$ factors as $(x + 1)(x^4 + x^3 + 2x^2 - 2x + 5)$. The quartic is irreducible over \mathbb{Q} for the following reason: From our work above, we know this quartic remains irreducible over \mathbb{F}_2 , so it must be irreducible over \mathbb{Z} to begin with. Therefore it is also irreducible over \mathbb{Q} .

Note.

Recall that Gauss's lemma states that a primitive polynomial $f \in \mathbb{Z}[x]$ is irreducible over \mathbb{Z} iff it is irreducible over \mathbb{Q} . The hard part of this lemma is the converse. Since we only use the forward direction, we don't need to cite the lemma.

Problem 4.

Prove that a prime number p can be written as $p=m^2+2n^2$ with $m,n\in\mathbb{Z}$ if and only if x^2+2 has a root in \mathbb{F}_p .

Solution.

If $p = m^2 + 2n^2$, then taking mod p, we have $m^2 + 2n^2 \equiv 0 \pmod{p}$. If $n \not\equiv 0 \pmod{p}$, then $(m/n)^2 + 2 \equiv 0 \pmod{p}$. Otherwise $n \equiv 0 \pmod{p}$ and so $m^2 \equiv 0 \pmod{p}$ and so $m \equiv 0 \pmod{p}$. Therefore, m, n are multiples of p, so $m^2 + 2n^2$ has a factor of p^2 and is equal to p, a contradiction.

Conversely, suppose that $x^2+2\equiv 0 \pmod{p}$ has solutions. Then $\mathbb{F}_p[x]/(x^2+2)$ is not an integral domain. Since

$$rac{\mathbb{F}_p[x]}{(x^2+2)}\cong \ rac{\mathbb{Z}[x]}{(p,x^2+2)}\cong \ rac{\mathbb{Z}[\sqrt{-2}]}{(p)},$$

p is not a prime in $\mathbb{Z}[-\sqrt{-2}].$ Therefore,

$$p = (a + b\sqrt{-2})(m + n\sqrt{-2})$$

for some nonunits $a+b\sqrt{-2}, m+n\sqrt{-2}\in\mathbb{Z}[\sqrt{-2}].$

There are now two ways to argue.

Argument 1. Since $p \in \mathbb{Z}$, these two factors must be conjugate, so we conclude that

$$p = (a + b\sqrt{-2})(a - b\sqrt{-2}) = a^2 + 2b^2.$$

Argument 2. Taking the norm of both sides, we get

$$p^2 = (a^2 + 2b^2)(m^2 + 2n^2).$$

Since $a+b\sqrt{-2}, m+n\sqrt{-2}$ are nonunits in $\mathbb{Z}[\sqrt{-2}]$, their norms are not equal to 1. Therefore,

$$a^2 + 2b^2 = m^2 + 2n^2 = p.$$

 \otimes

