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1.

Prove that the polynomial  is irreducible polynomial over the field . (Hint: Use multiplicative
property of degree. In class, we proved  is irreducible in . Similar argument also works here.)

Solution.

Let  be a root of  in . Consider the diamond of field extensions:

The polynomials  and  are irreducible over  by Eisenstein's criterion, so

These two numbers divide , and so 

On the other hand, the minimal polynomial (aka irreducible polynomial) of  over  divides 
and so has degree . Therefore

So

and therefore

So  is irreducible over the field .

▧

2.

Determine the irreducible polynomial for  over the following fields. (You need to prove why they
are the irreducible polynomials)

1. 
2. 
3. 

x +4 3x + 3 Q[  ]3 2
x −3 2 Q[  ]2

α x +4 3x + 3 C

     Q(α)
╱≤3
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Q(α,  )3 2
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╲

╱  3

Q(  )3 2

x −3 2 x +4 3x + 3 Q

[Q(α) : Q] = 4, [Q(  )] =3 2 3.

[Q(α,  ) :3 2 Q] [Q(α,  ) :3 2 Q] ≥ 12.

α Q(  )3 2 x +4 3x + 3
≤ 4

[Q(α,  ) :3 2 Q] = [Q(α,  ) :3 2 Q(  )][Q(α,  ) :3 2 3 2 Q] ≤ 3 ⋅ 4 = 12.

[Q(α,  ) :3 2 Q] = 12

[Q(α,  ) :3 2 Q(  )] =3 2 4.

x +4 3x + 3 Q(  )3 2

α =  +3  5

Q
Q(  )15
Q(  )3 2



(Hint: try to use  as the roots of the polynomial to find some polynomial over . Use the tower of
the field extension to find  and .

Solution. Let .

First, the polynomial  is irreducible over , and so is
irreducible over  and hence over . This is therefore the irreducible polynomial of  over .

Next,  so . Since

is of degree 2 and has root , it is the irreducible polynomial of  over .

Finally, by the same reasoning as the solution to Problem 1, we see that , and so 
 is the irreducible polynomial of  over .

▧
3.

Prove that any quadratic extension of  is isomorphic to .

Solution.

Let  be a quadratic extension of . Pick . Then  so since , we have 
 and so the minimal polynomial of  over  has the form . Then we

have isomorphisms:

The two isomorphisms above come from applying the first isomorphism theorem to the two evaluation maps

▧

4.

Prove that the characteristic of a field  is either  or a prime number. If it is a prime number , show that the
map  gives an injective ring homomorphism from  to itself.

Solution.

The  be the characteristic of a field , i.e. the least nonnegative integer which generates the kernel of the map 
. By the first isomorphism theorem, this induces an injective ring homomorphism

±  ±3  5 Q
[Q(  ,  ) : Q(  )]3 5 15 [Q(  +3  ,  ) : Q(  )]5 3 2 3 2
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(x − α)(x + α)(x − β)(x + β) = x −4 16x +2 4 F  5

Z Q α Q

[Q(  ) :15 Q] = 2 [Q(α) : Q(  )] =15 2
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α α Q(  )15
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Now  is an integral domain, so  is also an integral domain, so  is zero or a prime number.

The map  is clearly multiplicative and sends  to . It is also additive, since  for 
 proves that

Finally  is an ideal of  not containing . Since  is a field, its only ideals are  and , and so ,
so  injects.

▧
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