HW 11 Solutions

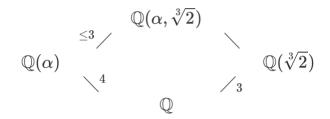
3rd May 2019 at 11:11am

1.

Prove that the polynomial $x^4 + 3x + 3$ is irreducible polynomial over the field $\mathbb{Q}[\sqrt[3]{2}]$. (Hint: Use multiplicative property of degree. In class, we proved $x^3 - 2$ is irreducible in $\mathbb{Q}[\sqrt{2}]$. Similar argument also works here.)

Solution.

Let lpha be a root of $x^4 + 3x + 3$ in $\mathbb C$. Consider the diamond of field extensions:



The polynomials x^3-2 and x^4+3x+3 are irreducible over ${\mathbb Q}$ by Eisenstein's criterion, so

$$[\mathbb{Q}(lpha):\mathbb{Q}]=4,\; [\mathbb{Q}(\sqrt[3]{2})]=3.$$

These two numbers divide $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}]$, and so $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}] \ge 12$.

On the other hand, the minimal polynomial (aka irreducible polynomial) of α over $\mathbb{Q}(\sqrt[3]{2})$ divides $x^4 + 3x + 3$ and so has degree ≤ 4 . Therefore

$$[\mathbb{Q}(lpha,\sqrt[3]{2}):\mathbb{Q}]=[\mathbb{Q}(lpha,\sqrt[3]{2}):\mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(lpha,\sqrt[3]{2}):\mathbb{Q}]\leq 3\cdot 4=12.$$

So

$$[\mathbb{Q}(lpha,\sqrt[3]{2}):\mathbb{Q}]=12$$

and therefore

$$[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})] = 4.$$

So x^4+3x+3 is irreducible over the field $\mathbb{Q}(\sqrt[3]{2}).$

2.

Determine the irreducible polynomial for $\alpha = \sqrt{3} + \sqrt{5}$ over the following fields. (You need to prove why they are the irreducible polynomials)

1. \mathbb{Q} 2. $\mathbb{Q}(\sqrt{15})$ 3. $\mathbb{Q}(\sqrt[3]{2})$ (Hint: try to use $\pm\sqrt{3} \pm \sqrt{5}$ as the roots of the polynomial to find some polynomial over \mathbb{Q} . Use the tower of the field extension to find $[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{15})]$ and $[\mathbb{Q}(\sqrt{3}+\sqrt{5},\sqrt[3]{2}):\mathbb{Q}(\sqrt[3]{2})]$.

Solution. Let $\beta = \sqrt{3} - \sqrt{5}$.

First, the polynomial $(x - \alpha)(x + \alpha)(x - \beta)(x + \beta) = x^4 - 16x^2 + 4$ is irreducible over \mathbb{F}_5 , and so is irreducible over \mathbb{Z} and hence over \mathbb{Q} . This is therefore the irreducible polynomial of α over \mathbb{Q} .

Next, $[\mathbb{Q}(\sqrt{15}):\mathbb{Q}]=2$ so $[\mathbb{Q}(lpha):\mathbb{Q}(\sqrt{15})]=2$. Since

$$(x-lpha)(x+lpha)=x^2-(8+2\sqrt{15})\in\mathbb{Q}(\sqrt{15})[x]$$

is of degree 2 and has root α , it is the irreducible polynomial of α over $\mathbb{Q}(\sqrt{15})$.

Finally, by the same reasoning as the solution to Problem 1, we see that $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})] = 4$, and so $x^4 - 16x^2 + 4$ is the irreducible polynomial of α over $\mathbb{Q}(\sqrt[3]{2})$.

3.

Prove that any quadratic extension of \mathbb{R} is isomorphic to \mathbb{C} .

Solution.

Let F be a quadratic extension of \mathbb{R} . Pick $\alpha \in F - \mathbb{R}$. Then $F \supseteq \mathbb{R}[\alpha] \supseteq \mathbb{R}$ so since $[F : \mathbb{R}] = 2$, we have $F = \mathbb{R}[\alpha]$ and so the minimal polynomial of α over \mathbb{R} has the form $f(x) = x^2 + bx + c \in \mathbb{R}[x]$. Then we have isomorphisms:

$$F = \mathbb{R}[lpha] \cong \; rac{\mathbb{R}[x]}{(f(x))} \cong \; \mathbb{C}.$$

The two isomorphisms above come from applying the first isomorphism theorem to the two evaluation maps

$$egin{array}{rcl} \mathbb{R}[x] & o & \mathbb{R}[lpha] & \subset F & & \mathbb{R}[x] & o & \mathbb{C} \ x & \mapsto & lpha & , & & x & \mapsto & rac{-b+\sqrt{b^2-4ac}}{2} \end{array}$$

4.

Prove that the characteristic of a field F is either 0 or a prime number. If it is a prime number p, show that the map $\phi \colon x \mapsto x^p$ gives an injective ring homomorphism from F to itself.

Solution.

The n be the characteristic of a field F, i.e. the least nonnegative integer which generates the kernel of the map $\mathbb{Z} \to F: m \mapsto nm$. By the first isomorphism theorem, this induces an injective ring homomorphism

$$\mathbb{Z}/n\mathbb{Z} \hookrightarrow F.$$

 \otimes

Now F is an integral domain, so $\mathbb{Z}/n\mathbb{Z}$ is also an integral domain, so n is zero or a prime number.

The map ϕ is clearly multiplicative and sends 1 to 1. It is also additive, since $\binom{p}{i} \equiv 0 \pmod{p}$ for i=1,...,p-1 proves that

$$(x+y)^p = x^p + \binom{p}{1} x^{p-1} y + \binom{p}{1} x^{p-1} y + \dots + \binom{p}{p-1} x y^{p-1} + y^p = x^p + y^p ext{ in } \mathbb{F}_p.$$

Finally ker ϕ is an ideal of F not containing 1. Since F is a field, its only ideals are F and 0, and so ker $\phi = 0$, so ϕ injects.

222	
KNN	
6771	