Homework 7 Solutions

1.

(a)

Since I, J are ideals of R, they are (additive) subgroups of R, so
I N J is a subgroup of R.

Nextletr € Randa € INJ. Thenra € RI C I andra € RJ C J,
sora € INJ. Since r € R is arbitrary, we have R(INJ) C INJ.

Therefore I N J is an ideal of R.

Let ¢1,co € I + J. By definition, ¢; = a; + by and ¢y = ag + by for
some ay,as € I and by, by € J. Then

citcea=a1+b+a+by=(a1+a)+ (b1 +b) el +J

Next let »r € R and ¢ € I 4+ J. By definition, ¢ = a + b for
some a € I,b € J. Now rc = ra + rb satisfies ra € rI C [ and
rberJ C Jsorcel+ J.

Therefore I + J is an ideal of R.

Let ¢, € IJ. By definition, ¢; = Y a;b; and ¢ =) aib) for some
a;,a; € I and b;, b, € J. Then
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c—i—c’:Zaibi—l—Za;b;EIJ.

Next let r € R and ¢ € IJ. By definition, ¢ = ) a;b; for some
a; € I and b; € J. Then

rc = rZain- = Z(Tai)bi.

Since ra; € rI C I, we see that rc € IJ.

Therefore I.J is an ideal of R.

2. Suppose that [ C J. Thena € I C J = (b) so a = ¢b for some ¢ € R.

Therefore, b divides a.

Conversely, suppose that b divides a. This means that a = ¢b for some
c€ R SoaelCJ=(b. Forany r € R, ra € R(b) = (b) so
(a) = Ra C (b).

The ring homomorphism f : Z — 7Z/127Z has kernel (12). By the
correspondence theorem, the ideals of Z/127 correspond to the ideals
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of Z that contain (12). By our work above, the ideals of Z containing
(12) must be (1),(2),(3),(4), (6), (12). Under the correspondence, the
ideals of Z — Z/127 are therefore given by (1), (2), (3), (4), (6), (0).

. Finding the kernel. After a linear change of variables, we can instead
work with the ring homomorphism

¥ Clz,y] — Ct]
Tt
yi—>t3

We claim that kert) = (3 — y). (This implies that ker ¢ = ((x +1)% —
y —1).) The inclusion kert¢ D (2 — y) is clear. For the reverse inclu-
sion, let f € ker, so that f(¢,t3) = 0.

Consider f(z,y) and x® —y as polynomials in y. Since —y+ 2 has unit
leading coefficient —1, we can divide f(z,y) by —y + x*, giving us:

f(xvy) = Q<x7y)<_y + 1:3) + T(SL’,y)

for some q(x,y),7(z,y) € Clr,y] with deg, r(z,y) < degy(—y+x3) =1,
so r(x,y) = r(x). Upon evaluation our equality becomes

0= f(t,t%) = q(t,t?) -0+ r(t)

so r(t) = 0 so r(x) = 0. Therefore f € (x> — y) so kery) C (23 — y).

Showing any ideal containg ker ¢ is generated by two elements.

Again it suffices to show that any ideal containg ker ¢ is generated by
two elements. Let I be an ideal of C[z,y] containing kert. By the
correspondence theorem, its image (1) is an ideal of C[t]. Since any
ideal of C[t] is principal, ¥(I) = (f(t)) for some f(t) € C[t].

We claim that I = (f(z), 23 —y).

I D (f(z),z% —y) . By the correspondence theorem, I = ¢~1((f(t)))
and since f(z) is a preimage of f(t) € (f(t)) and 2® — y is a preimage
of 0 € (f(t)), the inclusion I D (f(z),z* — y) holds.




IC(f(x),2®—vy) . Let g(x,y) € I be given. Since

g(t, 1) = ¥(g(z,y)) € v(I) = (f(1)),

we can write g(t, %) = h(t) f(t) for some h(t) € C[t]. This implies that

g(x,y) — h(z)f(z) € ker ) = (z° —y)

and so

9(z,y) € (2° —y) + h(2)f(2) C (2° —y, f(x)).

Since g € I is arbitrary, we deduce that I C (f(z), 2 — y).

4. Any ideal of Z[i] contains 0, which is an integer.

5.

(a)
(b)

View the ideal (2+1) as a lattice in Z[i] and note that the quotient
has 5 elements. As a result, (QZ—E]Z.) is isomorphic to Z/5Z as a group.
Since Z/5Z is a cyclic group, the multiplication structure on it is
uniquely determined. Therefore any ring with 5 elements must be
isomorphic to Z/5Z, so % is isomorphic to Z/5Z as rings.

We claim that ker f = (x,y). Clearly ker f D (z,y) since f(z) =
f(y) = 0. Conversely let

g(z,y) = Z ai; 'y’
i,§>0

be an element in ker f. This means that f(g) = ¢(0,0) = ago = 0.
Therefore

gz, y) = ( > aijxi‘lyj> z+ ( > aij:viyj”) y C (2,9).
i>0,j=0 i>0,j>0

This shows that ker f C (z,y).

We claim that ker f = (2* — 42 4+ 5). Since R[z] is a ring with
division algorithm, its ideals are all principal, so ker f = (g) for
some g € R[z]. Clearly g is not constant or linear since 2 + i is
not in R. Since 22 — 4x + 5 is the polynomial of smallest degree
which has 2 + 7 as a root, we can take g to be 22 — 4x + 5.

Here’s another way to say the above. To show that ker f =
(z? — 4z + 5), note that the inclusion ker f D (2% — 4z + 5) is

3



clear. For the converse, let g(x) € ker f, so we get g(2 4 i) = 0.

Now by the division algorithm,
g(z) = q(x)(a® — 4z +5) + r(2)

for some q(z),r(x) € R[z] with degr(z) < 2. Plugging in 2 + 1 to
this equality gives

0=9(24+1)=q2+17)-0+r2+1)

Since 2 + ¢ is not in R and r(z) is either a constant or a linear
polynomial over R, we must have r(xz) = 0. Therefore,

g(x) = q(x)(z* — 4 + 5) € (2 — 4w +5).



