Homework 7 Solutions

1. (a) Since I, J are ideals of R, they are (additive) subgroups of R, so $I \cap J$ is a subgroup of R.

Next let $r \in R$ and $a \in I \cap J$. Then $ra \in RI \subset I$ and $ra \in RJ \subset J$, so $ra \in I \cap J$. Since $r \in R$ is arbitrary, we have $R(I \cap J) \subset I \cap J$.

Therefore $I \cap J$ is an ideal of R.

(b) Let $c_1, c_2 \in I + J$. By definition, $c_1 = a_1 + b_1$ and $c_2 = a_2 + b_2$ for some $a_1, a_2 \in I$ and $b_1, b_2 \in J$. Then

$$c_1 + c_2 = a_1 + b_1 + a_2 + b_2 = (a_1 + a_2) + (b_1 + b_2) \in I + J.$$

Next let $r \in R$ and $c \in I + J$. By definition, c = a + b for some $a \in I, b \in J$. Now rc = ra + rb satisfies $ra \in rI \subset I$ and $rb \in rJ \subset J$ so $rc \in I + J$.

Therefore I + J is an ideal of R.

(c) Let $c, c' \in IJ$. By definition, $c_1 = \sum a_i b_i$ and $c' = \sum a'_i b'_i$ for some $a_i, a'_i \in I$ and $b_i, b'_i \in J$. Then

$$c + c' = \sum a_i b_i + \sum a'_i b'_i \in IJ.$$

Next let $r \in R$ and $c \in IJ$. By definition, $c = \sum a_i b_i$ for some $a_i \in I$ and $b_i \in J$. Then

$$rc = r \sum a_i b_i = \sum (ra_i)b_i.$$

Since $ra_i \in rI \subset I$, we see that $rc \in IJ$.

Therefore IJ is an ideal of R.

2. Suppose that $I \subset J$. Then $a \in I \subset J = (b)$ so a = cb for some $c \in R$. Therefore, b divides a.

Conversely, suppose that b divides a. This means that a = cb for some $c \in R$. So $a \in I \subset J = (b)$. For any $r \in R$, $ra \in R(b) = (b)$ so $(a) = Ra \subset (b)$.

The ring homomorphism $f : \mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$ has kernel (12). By the correspondence theorem, the ideals of $\mathbb{Z}/12\mathbb{Z}$ correspond to the ideals

of \mathbb{Z} that contain (12). By our work above, the ideals of \mathbb{Z} containing (12) must be (1), (2), (3), (4), (6), (12). Under the correspondence, the ideals of $\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$ are therefore given by $(\bar{1}), (\bar{2}), (\bar{3}), (\bar{4}), (\bar{6}), (\bar{0})$.

3. Finding the kernel. After a linear change of variables, we can instead work with the ring homomorphism

$$\psi: \mathbb{C}[x, y] \to \mathbb{C}[t]$$
$$x \mapsto t$$
$$y \mapsto t^{3}$$

We claim that ker $\psi = (x^3 - y)$. (This implies that ker $\phi = ((x + 1)^3 - y - 1)$.) The inclusion ker $\psi \supset (x^3 - y)$ is clear. For the reverse inclusion, let $f \in \ker \psi$, so that $f(t, t^3) = 0$.

Consider f(x, y) and $x^3 - y$ as polynomials in y. Since $-y + x^3$ has unit leading coefficient -1, we can divide f(x, y) by $-y + x^3$, giving us:

$$f(x,y) = q(x,y)(-y+x^{3}) + r(x,y)$$

for some $q(x, y), r(x, y) \in \mathbb{C}[x, y]$ with $\deg_y r(x, y) < \deg_y (-y + x^3) = 1$, so r(x, y) = r(x). Upon evaluation our equality becomes

$$0 = f(t, t^3) = q(t, t^3) \cdot 0 + r(t)$$

so r(t) = 0 so r(x) = 0. Therefore $f \in (x^3 - y)$ so ker $\psi \subset (x^3 - y)$.

Showing any ideal containg ker ϕ is generated by two elements.

Again it suffices to show that any ideal containg ker ψ is generated by two elements. Let I be an ideal of $\mathbb{C}[x, y]$ containing ker ψ . By the correspondence theorem, its image $\psi(I)$ is an ideal of $\mathbb{C}[t]$. Since any ideal of $\mathbb{C}[t]$ is principal, $\psi(I) = (f(t))$ for some $f(t) \in \mathbb{C}[t]$.

We claim that $I = (f(x), x^3 - y)$.

 $\underline{I \supset (f(x), x^3 - y)}$. By the correspondence theorem, $I = \psi^{-1}((f(t)))$ and since f(x) is a preimage of $f(t) \in (f(t))$ and $x^3 - y$ is a preimage of $0 \in (f(t))$, the inclusion $I \supset (f(x), x^3 - y)$ holds. $\underline{I \subset (f(x), x^3 - y)}.$ Let $g(x, y) \in I$ be given. Since

$$g(t, t^3) = \psi(g(x, y)) \in \psi(I) = (f(t)),$$

we can write $g(t, t^3) = h(t)f(t)$ for some $h(t) \in \mathbb{C}[t]$. This implies that

$$g(x,y) - h(x)f(x) \in \ker \psi = (x^3 - y)$$

and so

$$g(x,y) \in (x^3 - y) + h(x)f(x) \subset (x^3 - y, f(x)).$$

Since $g \in I$ is arbitrary, we deduce that $I \subset (f(x), x^3 - y)$.

- 4. Any ideal of $\mathbb{Z}[i]$ contains 0, which is an integer.
- 5. (a)
 - (b) View the ideal (2+i) as a lattice in $\mathbb{Z}[i]$ and note that the quotient has 5 elements. As a result, $\frac{\mathbb{Z}[i]}{(2+i)}$ is isomorphic to $\mathbb{Z}/5\mathbb{Z}$ as a group. Since $\mathbb{Z}/5\mathbb{Z}$ is a cyclic group, the multiplication structure on it is uniquely determined. Therefore any ring with 5 elements must be isomorphic to $\mathbb{Z}/5\mathbb{Z}$, so $\frac{\mathbb{Z}[i]}{(2+i)}$ is isomorphic to $\mathbb{Z}/5\mathbb{Z}$ as rings.
- 6. (a) We claim that ker f = (x, y). Clearly ker $f \supset (x, y)$ since f(x) = f(y) = 0. Conversely let

$$g(x,y) = \sum_{i,j \ge 0} a_{ij} x^i y^j$$

be an element in ker f. This means that $f(g) = g(0, 0) = a_{00} = 0$. Therefore

$$g(x,y) = \left(\sum_{i>0,j=0} a_{ij} x^{i-1} y^j\right) x + \left(\sum_{i\geq 0,j>0} a_{ij} x^i y^{j-1}\right) y \subset (x,y).$$

This shows that ker $f \subset (x, y)$.

(b) We claim that ker $f = (x^2 - 4x + 5)$. Since $\mathbb{R}[x]$ is a ring with division algorithm, its ideals are all principal, so ker f = (g) for some $g \in \mathbb{R}[x]$. Clearly g is not constant or linear since 2 + i is not in \mathbb{R} . Since $x^2 - 4x + 5$ is the polynomial of smallest degree which has 2 + i as a root, we can take g to be $x^2 - 4x + 5$.

Here's another way to say the above. To show that ker $f = (x^2 - 4x + 5)$, note that the inclusion ker $f \supset (x^2 - 4x + 5)$ is

clear. For the converse, let $g(x) \in \ker f$, so we get g(2+i) = 0.

Now by the division algorithm,

$$g(x) = q(x)(x^{2} - 4x + 5) + r(x)$$

for some $q(x), r(x) \in \mathbb{R}[x]$ with deg r(x) < 2. Plugging in 2 + i to this equality gives

$$0 = g(2+i) = q(2+i) \cdot 0 + r(2+i)$$

Since 2 + i is not in \mathbb{R} and r(x) is either a constant or a linear polynomial over \mathbb{R} , we must have r(x) = 0. Therefore,

$$g(x) = q(x)(x^2 - 4x + 5) \in (x^2 - 4x + 5).$$