
Homework 7 Solutions

1. (a) Since I, J are ideals of R, they are (additive) subgroups of R, so
I ∩ J is a subgroup of R.

Next let r ∈ R and a ∈ I∩J . Then ra ∈ RI ⊂ I and ra ∈ RJ ⊂ J ,
so ra ∈ I ∩ J . Since r ∈ R is arbitrary, we have R(I ∩ J) ⊂ I ∩ J .

Therefore I ∩ J is an ideal of R.

(b) Let c1, c2 ∈ I + J . By definition, c1 = a1 + b1 and c2 = a2 + b2 for
some a1, a2 ∈ I and b1, b2 ∈ J . Then

c1 + c2 = a1 + b1 + a2 + b2 = (a1 + a2) + (b1 + b2) ∈ I + J.

Next let r ∈ R and c ∈ I + J . By definition, c = a + b for
some a ∈ I, b ∈ J . Now rc = ra + rb satisfies ra ∈ rI ⊂ I and
rb ∈ rJ ⊂ J so rc ∈ I + J .

Therefore I + J is an ideal of R.

(c) Let c, c′ ∈ IJ . By definition, c1 =
∑
aibi and c′ =

∑
a′ib
′
i for some

ai, a
′
i ∈ I and bi, b

′
i ∈ J . Then

c+ c′ =
∑

aibi +
∑

a′ib
′
i ∈ IJ.

Next let r ∈ R and c ∈ IJ . By definition, c =
∑
aibi for some

ai ∈ I and bi ∈ J . Then

rc = r
∑

aibi =
∑

(rai)bi.

Since rai ∈ rI ⊂ I, we see that rc ∈ IJ .

Therefore IJ is an ideal of R.

2. Suppose that I ⊂ J . Then a ∈ I ⊂ J = (b) so a = cb for some c ∈ R.
Therefore, b divides a.
Conversely, suppose that b divides a. This means that a = cb for some
c ∈ R. So a ∈ I ⊂ J = (b). For any r ∈ R, ra ∈ R(b) = (b) so
(a) = Ra ⊂ (b).

The ring homomorphism f : Z → Z/12Z has kernel (12). By the
correspondence theorem, the ideals of Z/12Z correspond to the ideals
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of Z that contain (12). By our work above, the ideals of Z containing
(12) must be (1), (2), (3), (4), (6), (12). Under the correspondence, the
ideals of Z→ Z/12Z are therefore given by (1̄), (2̄), (3̄), (4̄), (6̄), (0̄).

3. Finding the kernel. After a linear change of variables, we can instead
work with the ring homomorphism

ψ : C[x, y]→ C[t]

x 7→ t

y 7→ t3

We claim that kerψ = (x3 − y). (This implies that kerφ = ((x+ 1)3 −
y − 1).) The inclusion kerψ ⊃ (x3 − y) is clear. For the reverse inclu-
sion, let f ∈ kerψ, so that f(t, t3) = 0.

Consider f(x, y) and x3−y as polynomials in y. Since −y+x3 has unit
leading coefficient −1, we can divide f(x, y) by −y + x3, giving us:

f(x, y) = q(x, y)(−y + x3) + r(x, y)

for some q(x, y), r(x, y) ∈ C[x, y] with degy r(x, y) < degy(−y+x3) = 1,
so r(x, y) = r(x). Upon evaluation our equality becomes

0 = f(t, t3) = q(t, t3) · 0 + r(t)

so r(t) = 0 so r(x) = 0. Therefore f ∈ (x3 − y) so kerψ ⊂ (x3 − y).

Showing any ideal containg kerφ is generated by two elements.

Again it suffices to show that any ideal containg kerψ is generated by
two elements. Let I be an ideal of C[x, y] containing kerψ. By the
correspondence theorem, its image ψ(I) is an ideal of C[t]. Since any
ideal of C[t] is principal, ψ(I) = (f(t)) for some f(t) ∈ C[t].

We claim that I = (f(x), x3 − y).

I ⊃ (f(x), x3 − y) . By the correspondence theorem, I = ψ−1((f(t)))

and since f(x) is a preimage of f(t) ∈ (f(t)) and x3 − y is a preimage
of 0 ∈ (f(t)), the inclusion I ⊃ (f(x), x3 − y) holds.
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I ⊂ (f(x), x3 − y) . Let g(x, y) ∈ I be given. Since

g(t, t3) = ψ(g(x, y)) ∈ ψ(I) = (f(t)),

we can write g(t, t3) = h(t)f(t) for some h(t) ∈ C[t]. This implies that

g(x, y)− h(x)f(x) ∈ kerψ = (x3 − y)

and so
g(x, y) ∈ (x3 − y) + h(x)f(x) ⊂ (x3 − y, f(x)).

Since g ∈ I is arbitrary, we deduce that I ⊂ (f(x), x3 − y).

4. Any ideal of Z[i] contains 0, which is an integer.

5. (a)

(b) View the ideal (2+i) as a lattice in Z[i] and note that the quotient

has 5 elements. As a result, Z[i]
(2+i)

is isomorphic to Z/5Z as a group.

Since Z/5Z is a cyclic group, the multiplication structure on it is
uniquely determined. Therefore any ring with 5 elements must be
isomorphic to Z/5Z, so Z[i]

(2+i)
is isomorphic to Z/5Z as rings.

6. (a) We claim that ker f = (x, y). Clearly ker f ⊃ (x, y) since f(x) =
f(y) = 0. Conversely let

g(x, y) =
∑
i,j≥0

aijx
iyj

be an element in ker f . This means that f(g) = g(0, 0) = a00 = 0.
Therefore

g(x, y) =

( ∑
i>0,j=0

aijx
i−1yj

)
x+

( ∑
i≥0,j>0

aijx
iyj−1

)
y ⊂ (x, y).

This shows that ker f ⊂ (x, y).

(b) We claim that ker f = (x2 − 4x + 5). Since R[x] is a ring with
division algorithm, its ideals are all principal, so ker f = (g) for
some g ∈ R[x]. Clearly g is not constant or linear since 2 + i is
not in R. Since x2 − 4x + 5 is the polynomial of smallest degree
which has 2 + i as a root, we can take g to be x2 − 4x+ 5.

Here’s another way to say the above. To show that ker f =
(x2 − 4x + 5), note that the inclusion ker f ⊃ (x2 − 4x + 5) is
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clear. For the converse, let g(x) ∈ ker f , so we get g(2 + i) = 0.

Now by the division algorithm,

g(x) = q(x)(x2 − 4x+ 5) + r(x)

for some q(x), r(x) ∈ R[x] with deg r(x) < 2. Plugging in 2 + i to
this equality gives

0 = g(2 + i) = q(2 + i) · 0 + r(2 + i)

Since 2 + i is not in R and r(x) is either a constant or a linear
polynomial over R, we must have r(x) = 0. Therefore,

g(x) = q(x)(x2 − 4x+ 5) ∈ (x2 − 4x+ 5).
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