HW 8 Solutions

March 25, 2019

1. Let R be a finite integral domain. Let $0 \neq a \in R$. Then

$$\varphi: R \to R: r \mapsto ar$$

injects: if $r, s \in R$ satify ar = as, then $a(r - s) = 0 \Rightarrow r - s = 0$ since $a \neq 0$ and R is an integral domain.

Next, since R is finite and φ injects, φ must also surject. Therefore 1 = ar for some $r \in R$.

2. (a) The inclusion $IJ \subset I \cap J$ is clear. For the reverse inclusion, note that I+J=R implies that

$$I \cap J = R \cdot (I \cap J) \subset (I+J) \cdot (I \cap J) \subset (I+J)I \cap (I+J)J \subset IJ.$$

(b) Let $a, b \in R$ be given. We need to show that there exists $x \in R$ such that $x \equiv a \pmod{I}$ and $x \equiv b \pmod{J}$.

Let $e_1 \in I$, $e_2 \in J$ satisfy $1 = e_1 + e_2$. Set $x = be_1 + ae_2$. Then $x \equiv a \pmod{I}$ and $x \equiv b \pmod{J}$ since

 $x+I = be_1 + ae_2 + I = be_1 + a(1-e_1) + I = a + (b-a)e_1 + I = a + I$ in R/I

since $e_1 \in I$. Similarly, we get $x \equiv b \pmod{J}$.

(c) The ring homomorphism

$$R \to R/I \times R/J : r \mapsto (r \pmod{I}, r \pmod{J})$$

has kernel $I \cap J = IJ = 0$ (the first equality is by part (a)). This map surjects by part (b). By the first isomorphism theorem, we have

$$R \cong R/I \times R/J.$$

(d) Let $e_1 \in I$, $e_2 \in J$ satisfy $1 = e_1 + e_2$ as above. Then under the assumption that IJ = 0, the elements e_1, e_2 are the idempotents corresponding to the product decomposition $R \cong R/I \times R/J$ since we have

- $e_1e_2 \in IJ = 0.$
- $e_1^2 = e_1(1 e_2) = e_1 e_1e_2 = e_1$.
- Similarly $e_2^2 = e_2$.
- 3. Note that $f(x) = \frac{x^5 1}{x 1}$ implies that $\alpha^5 1 = 0$ in $\mathbb{Z}[\alpha] = \mathbb{Z}[x]/(f)$. Therefore $(\alpha^3 + \alpha^2 + \alpha)(\alpha^5 + 1) = 2(\alpha^3 + \alpha^2 + \alpha).$
- 4. Let *J* be a maximal ideal of $\mathbb{C}[x, y]/(x, y)$. By the correspondence theorem, this corresponds to an maximal ideal *I* of $\mathbb{C}[x, y]$ containing (xy). Since *I* is maximal, by Hilbert's nullstellensatz, I = (x-a, y-b) for some $a, b \in \mathbb{C}$. This means that *I* consists of polynomials f(x, y) passing through the point (a, b). The condition $xy \in I$ then tells us that g(x, y) = xy is one such polynomial passing through the point (a, b), so g(a, b) = ab = 0. Therefore I = (x a, y b) contains the element xy iff a = 0 or b = 0. By applying the correspondence theorem again, we conclude that the maximal ideals of $\mathbb{C}[x, y]/(x, y)$ are of the form (x a, y b) + (x, y), where a = 0 or b = 0.

Note. A more precise way to say the previous paragraph is the following. The ideal I is the kernel of the evaluation map $\varphi : \mathbb{C}[x, y] \to \mathbb{C} : f(x, y) \mapsto f(a, b)$. Therefore, $xy \in I = \ker \varphi$ iff $\varphi(xy) = ab$ is zero.

5. In this and the next solution, we use the following fact.

Fact. Let $n \ge 0$ be an integer. Then $\mathbb{Z}/(n)$ is a field iff n is a prime. \Box

Since

$$\frac{\mathbb{Z}[i]}{(i-2)} \cong \frac{\mathbb{Z}[x]}{(x-2,x^2+1)} \cong \frac{\mathbb{Z}[2]}{(0,2^2+1)} \cong \frac{\mathbb{Z}}{(5)}$$

is a field, (i-2) is a maximal ideal of $\mathbb{Z}[i]$.

6. Since

$$\frac{\mathbb{Z}[i]}{(i+3)} \cong \frac{\mathbb{Z}[x]}{(x+3,x^2+1)} \cong \frac{\mathbb{Z}[-3]}{(0,(-3)^2+1)} \cong \frac{\mathbb{Z}}{(10)}$$

is not a field, (i+3) is not a maximal ideal of $\mathbb{Z}[i]$.