Math 371	Name:
Spring 2019	
Midterm 1	
02/19/2019	
Time Limit: 80 Minutes	ID

"My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this"

Signature

This exam contains 12 pages (including this cover page) and 11 questions. Total of points is 110.

- Check your exam to make sure all 12 pages are present.
- You may use writing implements and a single handwritten sheet of 8.5"x11" paper.
- NO CALCULATORS.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Good luck!

ide Table (101 teacher use of		
Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
Total:	110	

Grade Table (for teacher use only)

1. (10 points) Let H be a subgroup of G. State the definition of normalizer of H in G. Find the normalizer of $H = \{1, (123), (132)\}$ in S_4 .

$$N(11) = \frac{1}{9} \frac{1}{6} \left(\frac{1}{9} \frac{1}{9} \frac{1}{9} - \frac{1}{9} \frac{1}{9} \right)$$

$$g(123) g^{-1} = (g(1), g(2), g(3)).$$
Since (123) and (132) are both generators of 14.

$$generators of 14.$$

$$g \in N(H) \text{ if ond only if}$$

$$g(123) g^{-1} = (123) \text{ or } (132)$$

$$S = \frac{1}{9} \frac{1}{9} \frac{1}{2}, \frac{1}{9} \frac{1}{2}, \frac{1}{9} \frac{1}{2}, \frac{1}{2} \frac{1}{9}, \frac{1}{2} \frac{1}{9}, \frac{1}{2} \frac{1}{2} \frac{1}{9}, \frac{1}{2} \frac{1}{2} \frac{1}{9}, \frac{1}{2} \frac{1}{9}, \frac{1}{2} \frac{1}{9}, \frac{1}{2} \frac{1}{9}, \frac{1}{9}, \frac{1}{2} \frac{1}{9}, \frac{1}{9}, \frac{1}{1} \frac{1}{9}, \frac{1}{1} \frac{1}{9}, \frac{1}{1} \frac{1}{9}, \frac{1}{1} \frac{1}{9}, \frac{1}{9}, \frac{1}{1} \frac{1}{9}, \frac{1}{9},$$

2. (10 points) Write the element $(123)(2345) \in S_5$ as product of disjoint cycles.

12345. 13452 = (12)(345) 21453

3. (10 points) Find the Sylow 2-subgroups of D_6 .

 $D_{b} = \zeta 1, X, X^{2}, X^{3}, X^{4}, X^{5}$ 4. xy. xy, xy, xy, xy / Any subgroup of Pb is either cyclic group, or dihedral group. Mere is no element with order y Sine So the Sylow 2. subgroup of Pb be Dzigenerated by a Notation of must angle 71 and reflection the Sylow 2- Subgroups are: 50 51. ×3. y. x34 <1, x³. xy, xxy $\begin{cases} 1, \chi^3, \chi^2 \gamma, \chi^5 \gamma \gamma \\ \eta \gamma \end{pmatrix}$

4. (10 points) Find all the normal subgroups of S_4 .

 $|5_{4}| = |4 \times 3 \times 2 \times 1 = 24$. All the conjugacy classes are C_1 5/7. (2 5 (12), (23), (24), (13). (14). (34) 7 6 $(3 \leq (12)), (132), (124), (134), (234)$ (243), (143). (142) 78 (4 (11234), (1832), (1324), (12×3) (1×23). (13×2) 76. $(r \leq (12713x), (13)(2x), (14)(23) \frac{1}{7}, 3$ Marmal subgroups are union of conjugary classes. Containing 514. So all the pressible unions are 1. 1+3, 1+3+8, 1+3+6+8+8, 519, C, UG, C, UG, UG, Sx.

5. (10 points) Let

$$H = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$

be a subgroup of special orthogonal group SO(2). Prove that the quotient group SO(2)/H is isomorphic to SO(2).

Define a map.

$$f: 50(2) - 750(2).$$

$$\begin{bmatrix} 1010 - 5in0\\ 5in0 & 100 \end{bmatrix} 1 - \begin{bmatrix} 10320, -6in20\\ 5in20, -6in20\\ 5in0 & 100 \end{bmatrix}$$

$$Then fis a house monthism.
and her f: $\int 1 - 1 - 1 \int -1 - 1 \int -1 -1 \int -1$$$

6. (10 points) Let C(G) be the center of G. Prove that |G/C(G)| can not be 15.

Assume 6/C(67 = 15 Danote G = 6/(G) Then G has a Unique sylow Subyroup Hand a Unique Sylow 3-subgroup. 50 1-10 K = SIY. HAG. KAG. HK = G and (, = /-/ ×/< ~ (J × (3 50 $G = U \times k C(G_7) = \int_{1-\infty}^{-1} \int_{1-\infty}$ $(\chi^{k_{1}}g_{1})(\chi^{k_{2}}g_{2}) = \chi^{k_{1}+k_{2}}$ $g_{1}g_{2} = (\chi^{k_{2}}g_{2})(\chi^{k_{1}}g_{1})$ So G is shelian. and ((G)=G

7. (10 points) Prove that a group of order 56 is not a simple group.

 $|(.) = tb = 2^3 \times 7$ Let s be the number of syber 7-group 5 | 8. 5 = | mod] 5=1. or, 3 50 S=1. then Sylew]- yroup is hormal. 5=3, let k,... ks be all the Sylow 7-groups. $K: \cap K_j = j : j : f : i : i : j'$ $50 \quad (|K_i| = 6 \times 871 = 49.$ $\left| \begin{array}{c} 6 \\ - \\ \end{array} \right|^{3} k_{i} = 7$ Let 14 be a Sylow 2-group. MAKi-giy 50 MC Sig U (G - UKi) and /M)=8 +1= 1) U(G-UK:) such 1-1 is unique is a normal subghoup $\left| - \right|$

8. (10 points) Classify all finite groups of order 14. |(,)| = 14. Let s be the humber of Sylow 7-subgroups then $S \equiv | mod 7$, $S|_2$ 50 5=1 Let 1-1 be the unique Syloh 7-subgroup 446. Let K be a Sylow 2-Subgroup $F| = \langle X \rangle, \quad | \langle X \rangle \rangle.$ $\times^2 = 1$. $y^2 = 1$. $y x y^{-1} = x^{\gamma}$. 1=1 mad 2 =) j l 23 456 j² 1 4 2 2 4 1 so j=/ or j=b $(a(l | , j = 1, (j = (z \times (j), (j = (z \times (j), (j = 1))))))$ (are 2, j=5. G = CX, y7. x'=1. y²=1 D7 ブアy-1=×

9. (10 points) Is there a transitive operation of S_4 on a set of five elements? Why?

No, If there is such an operation.
then
$$|G| = |S| \cdot |G_X|$$
.
 $x \in S$. $|S| = 5$.
 $|G| = |Y \times 3 \times 2 \times 1 = 7 \times 5$.
 $|G| = 2 \times 1 \times 1 = 7 \times 5$.

10. (10 points) Classify finite groups of order 28.

Let s be the humber of Sylow 7-subgrays.
s | 4 and
$$s \equiv | \mod 7$$
.
so s-1. Let H be the unique
Sylow 7-group.
Let $|k|$ be a Sylow 2-group.
Then $G \cong H \times k$.
(all 1. If $K \cong C_2 \times C_2$.
Let $U = C \times s$. $k = Cy...y_2 > .$
 $\chi^2 = g_1^2 = y_2^2 = 1.$
 $y_i \times y_i^{-1} = \chi j_i$. Then $y_i^2 \times y_i^{-2} = \chi^{j_i^2}$
 $j_i^2 \equiv 1 \pmod{2}$.
 $j_i = 1 \text{ or } b$. $(j_1, j_1) = (1, 1)$. $G \cong G_1 \times G_2 \oplus G_1$
 $(j_1, j_2) = (1, b) \text{ or } (b, 1)$. (b, b) . We can choose
 $d_1 \text{ finith generators for $C_1 \times G_2 \oplus G_1$
 $(are 2: If K \cong C_k$$

+1= (x7. K= 247 x² = 4×=1. yxy-1= x7, j = (mal 7))=1,026, $j \geq l$, $l_7 \cong (x \times l_7)$ $j = \begin{cases} -1 & -1 \\ -1 & -1$ $y = y^{-1} = x^{-1}$ Four different is morphism classes.

Bonus Question

11. (10 points) Let p be a prime number and G be a p-group. Let H be a proper subgroup of G (a subgroup of G which is not equal to G). Prove that the normalizer N(H) is strictly larger than H. (Hint: Restrict the operation of G on the cosets G/H to H).

$$\begin{array}{l} \left\{ l + |G| = p^{n}, |H| = p^{k}, \text{ osk } ch. \\ if k = 0, \quad H = 519, \quad N(H) = 6. \\ if k = 0, \quad K |H| = p^{n-k}. \\ p_{estrict} \quad he action \quad of \quad H \quad on \quad 6/H. \\ G/H = \prod_{i=1}^{m} 0_{i} \\ \text{Assume} \quad 0_{i} = 5[H) \frac{y}{i}, \quad |0_{i}| = 1. \\ \text{Since} \quad |G|H| = |0_{i}| + \dots + |0_{n}| = 0.1 \text{ matp} \\ |H| = |0_{i}| \cdot |H_{x_{i}}| = p^{k} \\ \text{and} \quad X_{i} \in 0_{i}. \end{array}$$

Than [0;]=1 >r p^k; k;>0. So = Oi other than O, s.f. $(\bigcirc_i) = /$ -1x: - 1-1, Let X: = 9: 1-1, gift. thin the h F 1-1. hgil-1 = gil-1. So gih gi E-1-1. $s_{n} = \frac{-1}{1} \in \mathcal{N}(\mathcal{H}).$ So XI(17) 7 1.