Math 371 Homework#10

Due on 4/18 at the beginning of Lecture

- 1. Prove that $\mathbb{Z}[\sqrt{-2}]$ is a PID. (Hint: use similar method in $\mathbb{Z}[i]$ to prove that $\mathbb{Z}[\sqrt{-2}]$ is an Eulidean domain.)
- 2. Decide whether or not $x^4 + 6x^3 + 9x + 3$ is irreducible in $\mathbb{Q}[x]$.
- 3. Factor the integral polynomial $x^5 + 2x^4 + 3x^3 + 3x + 5$ in $\mathbb{F}_2[x]$, $\mathbb{F}_3[x]$ and $\mathbb{Q}[x]$.
- 4. Prove that a prime number p can be written as $p = m^2 + 2n^2$ with $m, n \in \mathbb{Z}$ if and only if $x^2 + 2$ has a root in \mathbb{F}_p . (In fact, this is true if and only if p = 2 or $p \equiv 1, 3 \mod 8$, proved by Fermat.)