Math 371 Homework#11

Due on 4/25 at the beginning of Lecture

- 1. Prove that the polynomial $x^4 + 3x + 3$ is irreducible polynomial over the field $\mathbb{Q}[\sqrt[3]{2}]$. (Hint: Use multiplicative property of degree. In class, we proved $x^3 - 2$ is irreducible in $\mathbb{Q}[\sqrt{2}]$. Similar argument also works here.)
- 2. Determine the irreducible polynomial for $\alpha = \sqrt{3} + \sqrt{5}$ over the following fields. (You need to prove why they are the irreducible polynomials)
 - (a) \mathbb{Q}
 - (b) $\mathbb{Q}(\sqrt{15})$
 - (c) $\mathbb{Q}(\sqrt[3]{2})$

(Hint: try to use $\pm\sqrt{3} \pm \sqrt{5}$ as the roots of the polynomial to find some polynomial over \mathbb{Q} . Use the tower of the field extension to find $[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{15})]$ and $[\mathbb{Q}(\sqrt{3}+\sqrt{5},\sqrt[3]{2}):\mathbb{Q}(\sqrt[3]{2})].$

- 3. Prove that any quadratic extension of \mathbb{R} is isomorphic to \mathbb{C} .
- 4. Prove that the characteristic of a field F is either 0 or a prime number. If it is a prime number p, show that the map $\phi \colon x \mapsto x^p$ gives an injective ring homomorphism from F to itself.