Math 371 Homework#3

Due on 2/7 at the beginning of Lecture

- 1. Prove that a subgroup H of G is normal if and only if Hg = gH for any $g \in G$. Here $gH = \{gh|h \in H\}$ and $Hg = \{hg|h \in H\}$.
- 2. Let H be a subgroup of G with |G/H| = 2. Prove that H is a normal subgroup.
- 3. Prove that a normal subgroup H of G is the union of some conjugacy classes in G.
- 4. The 2-cycles (i_1, i_2) in symmetric group S_n are called transpositions. Prove that every element $x \in S_n$ can be written as a product of transpositions. (Hint: use induction on |S| where $S = \{i \in \{1, \dots, n\} | x(i) \neq i\}$.)
- 5. In this question, you will classify all the normal subgroups of S_4 .
 - (a) How many conjugacy classes are there in S_4 ?
 - (b) List all the elements in each conjugacy class.
 - (c) Find possible subsets G of S_4 such that
 - i. G contains identity,
 - ii. G is the union of some conjugacy classes,
 - iii. |G| divides $|S_4|$.
 - (d) Find all normal subgroups of S_4 (based on problem 3 and problem 4).
- 6. Prove
 - (a) Any subgroup of a cyclic group C_n is still a cyclic group.
 - (b) Any subgroup of dihedral group D_n is either a cyclic group or a dihedral group.
- 7. Let $y_1, y_2 \in O(2)$ be two reflections about lines l_1, l_2 . Assume the angle between l_1 and l_2 is θ . Find all the possible compositions y_1y_2 .
- 8. Find all the normal subgroups of D_4 . (Hint: use the procedure described in problem 5.)