Math 371 Homework#7

Due on 3/14 at the beginning of Lecture

- 1. Let R be a ring and I, J ideals of R. Prove the following
 - (a) $I \cap J$ is an ideal of R,
 - (b) $I + J = \{a + b | a \in I, b \in J\}$ is an ideal of R,
 - (c) $IJ = \{\sum_{i=0}^{n} a_i b_i | a_i \in I, b_i \in J, n \in \mathbb{N}\}$ is an ideal of R.
- 2. Let I = (a) and J = (b) be two ideals of R. Prove that $I \subset J$ if and only if b divides a. Use this fact and correspondence theorem to classify all the ideals in $\mathbb{Z}/12\mathbb{Z}$.
- 3. Artin Chapter 11, 3.4 Let $\phi \colon \mathbb{C}[x, y] \to \mathbb{C}[t]$ defined by $x \mapsto t + 1$ and $y \mapsto t^3 1$. Determine the kernel K of ϕ and prove that every ideal I of $\mathbb{C}[x, y]$ that contains K can be generated by two elements.
- 4. Artin Chapter 11, 3.2 Prove that any ideal of Gaussian integers $\mathbb{Z}[i]$ must contain an integer.
- 5. Artin Chapter 11, 4.3 a) b) Identify the following rings
 - (a) $\mathbb{Z}[x]/(x^2 3, 2x + 4)$ (NO solution in terms of $\mathbb{Z}/n\mathbb{Z}$ for this one, please discard this question),
 - (b) $\mathbb{Z}[i]/(2+i)$.

with $\mathbb{Z}/n\mathbb{Z}$ for some n.

- 6. Artin Chapter 11, 3.3 a) b) Find generators of the kernels of the following maps:
 - (a) $\mathbb{R}[x, y] \to \mathbb{R}$ by $f(x, y) \mapsto f(0, 0)$,
 - (b) $\mathbb{R}[x] \to \mathbb{C}$ by $f(x) \mapsto f(2+i)$.