Math 371	Name:
Spring 2019	
Midterm 1	
02/19/2019	
Time Limit: 80 Minutes	ID

"My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this"

Signature

This exam contains 12 pages (including this cover page) and 11 questions. Total of points is 110.

- Check your exam to make sure all 12 pages are present.
- You may use writing implements and a single handwritten sheet of 8.5"x11" paper.
- NO CALCULATORS.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Good luck!

ide Table (101 teacher use of		
Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
Total:	110	

Grade Table (for teacher use only)

1. (10 points) Let H be a subgroup of G. State the definition of normalizer of H in G. Find the normalizer of $H = \{1, (123), (132)\}$ in S_4 . 2. (10 points) Write the element $(123)(2345) \in S_5$ as product of disjoint cycles.

3. (10 points) Find the Sylow 2-subgroups of D_6 .

4. (10 points) Find all the normal subgroups of S_4 .

5. (10 points) Let

$$H = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$

be a subgroup of special orthogonal group SO(2). Prove that the quotient group SO(2)/H is isomorphic to SO(2).

6. (10 points) Let Z(G) be the center of G. Prove that |G/Z(G)| can not be 15.

7. (10 points) Prove that a group of order 56 is not a simple group.

8. (10 points) Classify all finite groups of order 14.

9. (10 points) Is there a transitive operation of S_4 on a set of five elements? Why?

10. (10 points) Classify finite groups of order 28.

Bonus Question

11. (10 points) Let p be a prime number and G be a p-group. Let H be a proper subgroup of G (a subgroup of G which is not equal to G). Prove that the normalizer N(H) is strictly larger than H. (Hint: Restrict the operation of G on the cosets G/H to H).