Math 371	Name:
Spring 2019	
Midterm 2	
4/2/2019	
Time Limit: 80 Minutes	ID

"My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this"

Signature _

This exam contains 10 pages (including this cover page) and 9 questions. Total of points is 108.

- Check your exam to make sure all 10 pages are present.
- You may use writing implements on both sides of a sheet of 8.5"x11" paper.
- NO CALCULATORS.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Good luck!

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
8	12	
9	12	
Total:	108	

Grade Table (for teacher use only)

1. (12 points) State the definition of of principal ideal domain (PID). Give three examples of PID.

2. (12 points) Find the units in $\mathbb{Z}/6\mathbb{Z}$.

3. (12 points) Let $f = x^2 + x + 1$ and let α denote the residue of x in the ring $R = \mathbb{Z}[x]/(f)$. Express $(\alpha^2 + 1)^2$ in terms of the basis $(1, \alpha)$ of R. 4. (12 points) Determine the division with remainder in $\mathbb{Z}[i]$. Let $\sigma(a) = |a|^2$ be the size function on $\mathbb{Z}[i]$. Find $q, r \in \mathbb{Z}[i]$ such that 6 = (1+2i)q + r and $\sigma(r) < \sigma(1+2i)$.

5. (12 points) Let $\mathbb{Z}[\sqrt{-3}] = \{m + n\sqrt{-3} | m, n \in \mathbb{Z}\}$. Is $(\sqrt{-3} + 2)$ a maximal ideal in $\mathbb{Z}[\sqrt{-3}]$? Why?

6. (12 points) What are the maximal ideals of $\mathbb{C}[x, y]/(x^2 - 1, y^2)$?

7. (12 points) Find the kernel of the homomorphism $\varphi \colon \mathbb{C}[x, y] \to \mathbb{C}[t]$ determined by $\phi(x) = t + 1, \phi(y) = t^2$ and $\phi(c) = c$ for any $c \in \mathbb{C}$.

8. (12 points) Give an example of irreducible polynomial f(x) of degree 3 in $\mathbb{F}_2[x]$.

9. (12 points) Prove that $\mathbb{Z}[i]/(5)$ is not a field.