$$E_{X:} \left(\frac{\mathcal{V}(i)}{(i-2)} \right) \left(\frac{\mathcal{V}(i)}{2\mathcal{V}(i)} - \int_{0}^{i} \frac{a+6i}{a+6i} \right) a \cdot 6(2),$$

$$W = \left(\frac{a}{4a+6a+1} + \frac{b}{4} + \frac{b}{4} \right), \quad 4a_{1}, \quad 4a_{2}, \quad 4$$

Fields maximal ideal
Fields maximal ideal
Solve equations
Solve equations
Ex: IR ring of real humbors.
We don't have a solution to
$$X^{2}+1$$
.
Goal: Find a larger ring. R!
(RCR', IR is a subring
on IR $\rightarrow R'$
and $x^{2}+1$ has a solution in R'
(RCR', $X = X + (x^{2}+1)$
 $\overline{X} \in R'$, $\overline{X} = X + (x^{2}+1)$
 $\overline{X}^{2}+1 = 0$ in R'. \overline{X} is a not of (-is
in R'
(R'+1).f(X) + rins
 $F(X) = ax + 6$.

any element in 12' has the form

$$a\bar{x}+b$$
. and
if $a_1\bar{x}+b_1 = a_2\bar{x}+b_2$.
then $(a_1-a_2)\bar{x}+(b_1-b_2) = 3$ is R' .
 $(a_1-a_1)\bar{x}+b_1-b_2 \in (x^2+1)$
 $(a_1-a_2)\bar{x}+b_1-b_2 \in (x^2+1)$
 $= 0, = 1$
 $a_1=a_2, b_2=b_2$.
(and which is $R' = (x'+1)\bar{y}$ is $R' = (x'+1)\bar{y}$
 $f(x) = (x'+1)\bar{y}$ is $R' = (x'+1)\bar{y}$.
 $R' = (x'+1)\bar{y}$.
 $R' = (x'+1)\bar{y}$ is $R' = (x'+1)\bar{y}$.
 $R' =$

F?=-1 (a1+b1x) (a2+b1x) = a, az + a, bz = + b, az + b, bz 2 = (a, az - b, hz) + (9, bz+ 6, az) + $R' \cong C$. This method is called adjoining elements. Ris aring. firs is a proposal with leading coefficient fix)= x"+ Gmx"- - + Q. E E (+). Goal: solve fixy = 0 Idea: consider R'= RTX)/IFix)

$$(pefn) \quad f(x) \quad is \quad monic \quad iff \ \ (auding \ roefficient
of \quad f(x) = 1 . \qquad \lambda = x + (f(x))
(boy: R' = R(x))/(f(x)) (or $P(x)) \\
f(x) = 0 \\
(D R' has a basis
(1, d, d2, ..., 2n-1) (or be mitted as
(1, d, d2, ..., 2n-1) of f(x)
any element R in R' (on be mitted as
R = Q + Q_1 d + Q_2 d - - Q_{n-1} d^{n-1} mitted
Q R(x) . f(x) = 0
R(x) . f(x) = 0
R(x) . f(x) = 0
(2 R(x)) . f(x) = 0
R(x) . f(x) = 0
(3 multiplication in R(x)) is determined by
DWR$$$

$$\begin{array}{l} \beta_{1} = g_{1}(k) \\ \beta_{2} = g_{1}(k) \\ = g_{1}(k) \\ g_{2}(k) \\ = f(a) \\ f(a) \\ + f(a) \\ \end{array}$$

Э

Profine
$$\mathcal{A}$$
 is a root of $f(x) = 0$
in \mathcal{R}' .
 $\mathcal{P} \hookrightarrow \mathcal{P}'$. is a subring of $12'$.
 $a_0 \longmapsto a_0$

 \mathcal{R} is not always true.
 $\mathcal{E}_X: f(x) = 2X + 1$. in $2/62$ (ix).
 $q(x) = 3X + 1$.
 $f(x) q(x) = (x + 1) (3x + 1)$
 $= 6x^2 + 5x + 1$.
 $deg f(x) q(x) = 1$.
 $deg f(x) = deg f + deg q$
if product of leading coefficients ± 0 .

Fields Defn (units), R, ring, SER. y is a unit iff shas a multiplicative inverse 5-1. 5-1.5 = 5.5-1= 1. (Unique) Pefr (Fields), F ting. F + 604 F is a field iff Floy is the set of units. of makes sense Ex: 2/62 0.1.2.3.4.5. 2 mit? x2 0 2 4 0 2.4. 2 has no multiplicative inverse -) U/62 is sot a field. (riterion of fields in terms of ideals Prop: F is a field iff F has only two trivial ideals sob F.

$$Pf: =)'' \quad I \subset F \quad is \quad cn \quad ideal.$$

$$I \neq s \circ y \quad a \neq o. \quad a \in I.$$

$$I = a^{-1}a \in (a)$$

$$S \in R, \quad s = 1 \cdot s \in (a)$$

$$=) \quad I \geq (a) = F.$$

$$T = F.$$

$$(a) \neq s \circ y, \quad (a) = F.$$

$$(a) \neq s \circ y, \quad (a) = F.$$

$$(a) \neq s \circ y, \quad (a) = F.$$

$$(a) \neq s \circ y, \quad (a) = F.$$

$$Breve: \quad Z/nZ \quad is \quad a \quad field \quad iff \quad h \ is \\ a \quad prime \quad hambler.$$

$$(m)$$

$$Uf: \quad Ideals \quad in \quad Z/nZ \quad (f \quad h \ is \\ a \quad prime \quad hambler.$$

$$(m)$$

$$Uf: \quad Ideals \quad in \quad Z/nZ \quad (f \quad h \ is \\ a \quad prime \quad hambler.$$

$$(m)$$

$$Uf: \quad Ideals \quad in \quad Z/nZ \quad (f \quad h \ is \\ a \quad prime \quad hambler.$$

$$(m)$$

$$Uf: \quad Ideals \quad in \quad Z/nZ \quad (f \quad h \ is \\ a \quad prime \quad hambler.$$

$$(m)$$

$$(m)$$

$$(f \quad h \ is \quad a \quad prime \quad hambler.$$

$$(m)$$

$$(m)$$

$$(f \quad h \ is \quad a \quad prime \quad hambler.$$

$$(m)$$

Then
$$(m) \supset (n)$$
 $(m) = (i) = 2$
 $0r (m) = (n)$
 $2i/n2i$ only has two idents
 $(f \ n \ i') \ nota$ prime number.
 $n = a \cdot b$. $a \neq t |$. $b \neq t /$
 $2i \neq (a) \not \equiv (n)$, $2i/n2i$ has more than
two ideals. $= i2i/n2i$ such
 $= ifild$
 $ifild$
 $First \ a \ field$. Then any ideal in
 $First \ is \ (farr)$. (DWR) .

Defin:
$$I \notin R$$
 idea(.is called maximultic ideal if $J > I$ is an ideal.
then $J = I$, $J = R$.

-

$$E_{X_{i}} (y : C(x, y) \to C, acc)$$

$$a \in C \to a \in C$$

$$x \to 1.$$

$$y \to$$

(anullation prop:
$$ab = ac$$
. $az_{a.}$
if $a, b, c \in R$, R is a field.
 $a^{-1}ab = a^{-1}ac = b = c$.
 $befn (Integral domain) P = 1509$
 R is an integral domain iff
 R has no the divisions,
if $ab = 0$, $a, b \in R$,
 $fab = 0$, $a, b \in R$,
 $fab = 0$, $a, b \in R$,
 $fab = 0$, $a, b \in R$,
 $fab = 0$, $a, b \in R$,
 $fab = 0$, $a, b \neq 0$.
if $ab = 0$, $a, b \neq 0$.
 $fab = 0$, $a, b \neq 0$.
 $fab = 0$, $a, b \neq 0$.
 $fab = 0$, $a, b \neq 0$.
 $fab = 0$, $a, b \neq 0$.
 $fab = 0$, $a, b \neq 0$.
 $fab = 0$, $a, b \neq 0$.
 $fab = 0$, $a, b \neq 0$.
 $fab = 0$, $a, b \neq 0$.
 $fab = 0$, $a = 0$.
 $fab = 0$.
 $fab = 0$, $a = 0$.
 $fab = 0$, $a = 0$.
 $fab = 0$.
 fab

/R/C+10.