In type 1 domains R. (with no ten divisors)
Faturing in R.
Why faturintum useful?
Ex:
$$\sqrt{2}$$
 is wation.(
 $Pf: |f = \sqrt{2} = \frac{p}{q}$.
 $2q^2 = |p^2 \cdot 2 + prime \cdot 2|p$, $p = 2k$.
 $q^1 = 2k^2 = 2|q$.
 $2|q$. (2) $prime \cdot 2|q$.
 $2|q$.
 $prime \cdot 2|q$.
 $2|q$.
 $prime \cdot 2|q$.
 $(2+k) dictory.$
 $2|q$.
 $(2+k) dictory.$
 $(2+k) dictory$

$$(=) (b) \stackrel{\leftarrow}{\mp} (a) \stackrel{\leftarrow}{\mp} (l) \\ \stackrel{\leftarrow}{\Box} is not \qquad G not \qquad a unit.$$

$$(b) = (a)$$
 means $b = ac$.
 $a = b \cdot d$.
 $b = b \cdot (d \cdot =) \cdot cd = 1$.

$$() \quad a, b \neq o. \qquad a \cdot b \quad a \cdot s \circ c_{i} a \neq s \quad (=) \quad (a) = (b).$$

$$i \cdot c. \quad a = b c \quad for \quad some \quad u_{hit} c.$$

(F)
$$a \neq 0$$
, a irreducible if $a \xrightarrow{(s)} n \neq n \neq ir}$.
(L not a unit:
 $a \quad has \quad no \quad proper \quad Airisen.$
($-$) $(a) \notin (1)$
 $(Mo \quad principal \quad ideal \quad (C)$
 $s_{i+1} \quad (a) \notin (C) \notin (1)$

(h)
$$\neq$$
 (1) and (a) is maximal (landor
in principal ideals.
(b) P is a prime element (not a unit)
if P divides ab, then p divides
 $a \text{ or } b$
(=) $ab (-(P) =) a \in (P)$ or $b \in (P)$
(=) $P/(P)$ is an integral domain.
(=) (P) is prime ideal.

Ex;

We used
$$UWR$$
.
Defu: Unclidean domain R.
R is an integral domain with site
function $\sigma: R|_{10} \rightarrow \mathbb{Z}_{\ge 0}$. Such that
 $\forall a. b \in R$, $b \neq 0$
 $\exists q, r \in R$, $s.t. a = bq + r$
 $r = 0$ or $\sigma(r) < \sigma(b)$.
 $\exists x: \mathbb{Z}, \quad \Gamma(a) = |a|$.
 $F(x), \quad F(x) = degree of f(x)$

Thurn: Enclidean domain is PID Pf: I = []. ideal of R. (Enclidean domain)

$$\begin{array}{c} (onsider & \left| f(r) \right| r \in \mathbb{I}, r \neq o \ \right|, has \\ a \text{ minimal value achieved by } \sigma(a), a \in \mathbb{I}. \\ \forall b \in \mathbb{I}, \quad b = aq + r. \\ (\mathcal{D} \ r = o, \quad b = aq. \\ (\mathcal{D} \ r \neq o, \quad \sigma(r) < \sigma(a)) \\ F = b - aq \in \mathbb{I}. \\ \hline T \ \mathbb{I} \quad \mathbb{I} \quad \mathbb{I} \\ \end{array}$$

$$\hat{E}_{X}$$
, $Z(i) = \frac{1}{2} a + \frac{1}{6} a$

$$\Gamma(a+bi) = [a]^{2} + [b]^{2} = [a+bi]^{2}.$$
Let $z_{1} = a+bi \neq o$, $a\neq o$, $b\neq =$.
 $2z = c+di$
 $z_{1} = -\frac{2}{1}\cdot\frac{9}{1} + r$
 $\left(\frac{9}{2} + \frac{2}{2}\cdot\frac{9}{1}\right) + r$

$$\frac{\frac{2}{2}}{\frac{1}{2}} is a \quad complex \quad number$$

$$\frac{\frac{2}{2}}{\frac{1}{2}} = m + ni, \qquad m, n \in \mathbb{Q}.$$
be cause
$$\frac{\frac{2}{2}}{\frac{2}{1}} = (c + di) \cdot \frac{a - bi}{a^2 + b^2}$$
Choose
$$mo, \qquad n \cdot \frac{2}{2} \operatorname{such} \quad \frac{4n}{n} + \frac{1}{n} - \frac{m}{s^2} + \frac{s}{2}.$$

$$\frac{m}{s} + \frac{n}{s} + \frac{1}{s} = (mo - m) + (no - n)i$$

$$\left[q - \frac{2i}{2}\right]^2 = (mo - m)^2 + (no - n)^2 \leq \frac{1}{2} + \frac{s}{2} = \frac{s}{2}.$$

$$= r \in 2(i). \qquad \leq i$$

$$\left[\frac{2}{2} - \frac{2}{2}\right]^2 = \left[\frac{2}{1}\left(\frac{2i}{2} - q\right)\right]^2$$

$$= \left[\frac{2}{1}\right]^2 \cdot \left(\frac{2i}{2} - q\right]^2 \leq \left(\frac{2}{1}\right)^2.$$

$$\begin{aligned} \frac{1}{22} = \frac{1}{2} \frac{1}{1} r, \quad \sigma(r) \in \sigma(\frac{1}{2}) \\ \frac{1}{2} \frac{1}{2} \frac{1}{1} \frac{1}{1$$

iff
$$m = h$$
 and after reasoning
 $2i \cdots 2n$ suitably, $2i$ is an associate
of pi , i.e. $2i = pi$. $2i$ unit.
 $2i = pi$. $2i$ $2i$ $2i$
 $2i = pi$. $2i$ $2i$
 $2i = pi$. $2i$
 $2i$
 $2i = pi$. $2i$
 $2i$
 $2i$. $2i$
 $2i$
 $2i$. $2i$
 $2i$
 $2i$. $2i$. $2i$
 $2i$. $2i$. $2i$
 $2i$. $2i$.

$$\mathcal{V}(i), \quad \mathcal{F} = (\mathcal{H}^{2}i)(\mathcal{I}-\mathcal{V}i)$$

$$= (\mathcal{I}+i)(\mathcal{I}-i)$$

$$(\mathcal{I}+i) \quad and \quad (\mathcal{I}-\mathcal{I}i) \quad are \quad GSSOCIATES.$$

$$(\mathcal{I}+i)i = (\mathcal{I}-\mathcal{I}i)$$

$$i(i^{3}) = \mathcal{I} \quad i \quad is \quad a \quad amit.$$

$$foa(i \quad Enclidum \quad Jomain \quad =) \quad \mathcal{P}ID \stackrel{Nom}{=} \mathcal{V}FD.$$

$$Thm_{2}: \quad \mathcal{F} \quad UFD, \qquad \mathcal{F}(x) \quad also \quad UFD.$$

Then 1: (connal:
$$P$$
 integral domain, any prime
element is interdectible.
 $Pf: P$ prime element. if P/ab . then
 $P|a \text{ or } P|b$
if $p=ab$. =) P/ab . then
 $P|a \text{ or } P|b$.
 $essume |P|a, a=p.c.$
 $p=p.c.b=)$ $cb=1$. b is a unit.
 $so a$ is not a proper divison.
Lemma 2: If P is PID , then comp inclusion
 $element$ is a prime element.
 $Pf: p$ inclusible =) (P) is maximal assump
 $Pritcipal ideals$

=? (P) is maximal ideal.
=)
$$P(p)$$
 is a field
=) (P) is a prime ideal.
PID: $P(p)$ prime element.
=) $P(p)$ is a field.
 $P(p)$ is a field.

 $P(f:1) \cdot (f') = P_1 P_2 \cdots P_m \cdot \frac{1}{2} - \frac{$

h7,2, 9, irreducible =) 9, prime $=) q_1(q_2 - q_n) = P_1 - P_n$ 9, Pi(p= Pm), + 9, prime =) q1 divides Pi. We can assume q1 divides P1 and since pl is irreducible. ql is a white or associates with PI P1, 9, 6550 Ciates. P1 = 9, U1. a = P1 -- Pm = 1, 4 P2 -- Pm = 9, 92 -- . 9

$$(uf_2) - f_m = f_2 - g_n$$
.
ineducité.
Induction on n =) faithrizapon is unique.

)) pirreducisk.

$$\begin{split} & I \oint P = a \ b \cdot = P_1 \cdots P_m \ q_1 \cdots q_n. \\ & \alpha = P_1 \cdots P_m \quad i m ed a c i b h \quad f a \ c h a h i h = ns. \\ & b = q_1 \cdots q_n \\ & h = h = 1. \quad a \quad or \quad b \quad m ust \ se \quad u \ nit. \end{split}$$

(i) We only med to prove factoring process
terminates in PID.
If for some do = a, b, ...
we have an infinite chain of factoring
process
We get a chain of ideals.
(a,)
$$f(a_1) f(a_2 - ...$$

(onsider $\bigcup_{i=0}^{\infty} (a_i) = I$, I is an ideal.
 $I = (a)$. $a \in (a_n)$. then $(a_1) \subset (a_n)$.

$$] \subset (a_n)$$
. $(a_s) = (a_{n+1}) \cdots -$

Non
$$\forall x: \mathcal{E}[\sqrt{-y}] = \int m + n \sqrt{y} / m \cdot n \in \mathbb{Z} \frac{y}{2}$$

subring of \mathcal{I}
is a $U \neq D$.

$$6 = 2 \cdot 3 = (1 + \sqrt{5})(1 - \sqrt{5}).$$

Defermine unity in $U[J_{-5}]$. $rick |\cdot|^2 \cdot lf = m + n J_{-5}$ is a unit. $2 \cdot W = 1$. $W = a + b J_{-5}$. $|2 - W|^2 = 1$. $(m^2 + 5h^2)(a^2 + 5b^2) = 1$.

$$m^{2} + 5n^{2} = 1, =) n = 0, m = \pm 1.$$

=) $uni+s$ in $2\left[\sqrt{-5}\right]$ are $\pm 1.$

2 irreduible because.

$$2 = \frac{1}{2} \cdot w. \qquad \frac{1}{2} = \frac{1}{2} \frac{1}{2}$$

$$2^{2} = (2|^{2} \cdot (w|^{2} =) \quad \forall = (m^{2} \tau f y^{2}) \cdot (a^{2} \tau f y^{2})$$

$$m^{2} \tau f m^{2} = 1.2, \forall .$$

$$m = 0. \quad m^{2} = 1, \text{ or } \forall .$$

$$m = t 1, \text{ or } \forall .$$

$$m = t 1, \text{ or } \neq 2.$$

$$w_{mits} = 455 \text{ or } p t 2.$$