Last time
$$\overline{c}\overline{c}i$$
) $\overline{c}uc(idean \ domain \ site \ function \ \overline{c}(m+ni) = |m+ni|^2 \ = m^2 + n^2.$

The prime elements or factorization is related
to number theory:
When is p prime number equal to
sum of two squares?
$$p \ge m^2 + n^2$$
 (p prime).

$$(D \quad Units \quad in \quad ZZi).$$

$$(f \quad S = m + ni, \quad m, n \in Z. \quad is$$

$$u \quad unit \quad in \quad ZZi). \quad then \quad S = \pm 1, \pm i.$$

$$(f: \quad S \cdot S^{-1} = 1. \quad (norm \quad square)$$

$$(S|^{2} (S^{-1})^{2} = 1. \quad S^{-1} = a + bi.$$

$$(m^{2} \pi n^{2}) (a^{2} + b^{2}) = 1.$$

$$(m^{2} \pi n^{2}) (a^{2} + b^{2}) = 1.$$

$$(m^{2} + n^{2}) = 1. \quad m = \pm 1. \quad n = 5.$$

$$(m^{2} + n^{2}) = 1. \quad m = 5. \quad 5 = 1.$$

Question (2).
$$Z \subseteq Z(i)$$
.
 Z is a subring of $Z(i)$.
The prime elements in Z are all prime numbers.
prime numbers may have more divisors in
 $T(i)$.
 $E_X: S$ prime element in Z .
but not prime element in $Z(i)$.
 $S = (1+2i)(1-2i)$
Prop: P prime number in Z ,
 P is sum of the squares iff
 P is reducible in $Z(i)$.
 $S = irreducible$ in $Z(i)$.
 $S = irreducible$ in $Z(i)$.
 $S = irreducible$ in $Z(i)$.

Norm square: $p^2 = (a^2 + b^2) (c^2 + d^2)$ in 22.].

if f = 1 in r = 1. p = 2. $2 = \frac{1}{1} \frac{1}{2}$. p not prime element in $\frac{1}{2} \frac{1}{1}$. p = 1 or $\frac{1}{2} \frac{1}{2}$. p = 1 or $\frac{1}{2} \frac{1}{2} \frac{1}{2}$.

$$(ind(::: p is not * prime (=) p = 1 (mod *)''
p is not * prime (=) $2\overline{c}i)/(p) is
not a field.
 $\overline{c}i)/(p)$, $2\overline{c}x)/(x+1) = 2\overline{c}i$?.
 $\overline{c}i)/(p) = 2\overline{c}i/(x+1)$
 $= 2\overline{c}x)/(x+1, p) = 2\overline{c}i$?
 $\overline{c}i/(p) = 1$
 $\overline{c}i = 2\overline{c}i/(p) (x+1)$
 $\overline{c}i/(p) = 1$
 $\overline{c}i = 1$
 $\overline{c}p = \overline{c}i/(x+1)$
 $\overline{c}i = 1$
 $\overline{c}p = 1$
 $\overline{c}i = 1$$$$

$$x^{l}$$
 + | reducible c=> x^{t} + | has a root
in $iF_{p}(\bar{x})$ $x=a$, i.e. a^{2} + l = 0
 $a \in iF_{p}$

(Imma:
$$p$$
 of a prime
(1) The multiplicative grap $IF_p^{x} = If_p \left| 5^{o} g \right|$
(0) this an element of order x iff $p \equiv 1 \mod_{x}$
(2) The integer $a \in 2$ solves $a^2 \equiv -1 \operatorname{Imad}_{p}$
iff \overline{a} in If_p^{x} is an element of order y .
iff a in If_p^{x}
 $eff: \left(\operatorname{Useful} fact IF_p^{x} is a cyclic group of order $(p-1)\right)$
 $0: If \overline{a}$ has order y in F_p^{x}
 $y \mid p-1$. $\equiv) p \equiv 1 \pmod_{x}$
 $if p^{x} = If_p^{x} yroup homomorphism.$
 $y : IF_p^{x} \to If_p^{x}$ group homomorphism.
 $x \mapsto x^{\perp}$.$

$$\begin{split} & \ker \varphi = f \pm i \right), \qquad \ker \varphi = f \times \Big| x^2 = i y \\ &= j \times \Big| (x - i) i x + y = 0 \right) \\ &= f \pm i y, \\ & \ln \varphi \stackrel{\text{\tiny $= $}}{=} \frac{|f_{\varphi}^{\times}|}{j \pm i y}, \quad hes \text{ order } \frac{p - i}{2}, \quad is \text{ m} \\ & \lim n \text{ number }, \qquad 2 \Big| \frac{p - i}{2}, \\ & \lim \varphi \text{ has } a \quad 2 - Sy + Sy + g \text{ orger gas and element} \\ & \text{of } \text{ order } 2, \\ & \lim \varphi \text{ has } a \text{ clement of } \text{ order } 2, \\ & \chi^2 = \Big|, \quad and \quad \chi \pm i \Big|, \quad so \quad \chi = -i, \\ & \lim \varphi \text{ and } \chi \pm i \Big|, \quad so \quad \chi = -i, \\ & \lim \varphi \text{ and } \chi \pm i \Big|, \quad a^2 = -i, \\ & a \quad i + i \cdot (f \quad \pm i, \quad a^2 \pm i, \quad (f \quad \text{odd}), \\ & \text{ a } \text{ hes } \text{ order } \varphi. \end{split}$$

b). If
$$\overline{a}$$
 has order \overline{y} in \overline{p} ,
then \overline{a}^2 has order 2 in \overline{p} .
so $\overline{a}^2 = -1$ in $\overline{1p}$
If $\overline{a}^2 = -1$, then \overline{a}^2 has order 2 in
 $\overline{1p}^{\overline{x}}$, $\overline{5} = \overline{a}$ has order \overline{y}

$$\begin{aligned} \mathcal{T}(i) \cdot \left(\begin{array}{c} p \end{array}\right) prime number \\ in \ \mathbb{Z}. \\ p \end{array} prime element in \ \mathbb{Z}(i) \\ \begin{array}{c} \pm p, \pm p^{a}(so \ a \ prime \ element \ in \ \mathbb{Z}(i) \\ p \end{array} \\ \begin{array}{c} p \end{array} \\ p \end{array} \\ \begin{array}{c} p \end{array} \\ p \end{array} \\ p \end{array} \\ \begin{array}{c} p \end{array} \\ p \end{array} \\ p \end{array} \\ \begin{array}{c} p \end{array} \\ \begin{array}{c} p \end{array} \\ p \end{array} \\ \begin{array}{c} p \end{array} \\ p \end{array} \\ \begin{array}{c} p \end{array} \\ \begin{array}{c} p \end{array} \\ p \end{array} \\ \begin{array}{c} p \end{array} \\ \begin{array}{c} p \end{array} \\ p \end{array} \\ \begin{array}{c} p \end{array} \\ \begin{array}{c} p \end{array} \\ p \end{array} \\ \begin{array}{c} p \end{array} \\ \end{array} \\ \begin{array}{c} p \end{array} \\ \begin{array}{c} p \end{array} \\ \begin{array}{c} p \end{array} \\ \end{array} \\ \begin{array}{c} p \end{array} \\ \end{array} \\ \begin{array}{c} p \end{array} \end{array} \\ \begin{array}{c} p \end{array} \\ \end{array} \\ \begin{array}{c} p \end{array} \end{array} \\ \begin{array}{c} p \end{array} \\ \begin{array}{c} p \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} p \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} p \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} p \end{array} \end{array} \end{array} \\ \begin{array}{c} p \end{array} \end{array} \end{array} \\ \begin{array}{c} p \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} p \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} p \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} p \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} p \end{array} \end{array} \\ \begin{array}{c} p \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\$$

mthi irreduciple
(2) mthi irreduciple
(2) mthi m.
$$n \in \mathbb{Z}$$
. $m^{2} + n^{2} = p$.
 $p \equiv 1 \pmod{3}, p \equiv 2$.
 $p \equiv 2 [i] = 2 [i]$ is a bijectric ring
 $E = 1 - 1 = \frac{1}{2}$ (be more repliced
 $a + 5i = 1 - 3 - 5i$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} + 5 = 2$.
 $(a + 5i) (a - 5i) = a^{2} + 5^{2} +$

$$\begin{split} & |f \quad p_{j} = 1 \pmod{4}, \quad p_{j} = 2, \\ & p_{j} = (m_{j} + h_{j} i) (m_{j} - n_{j} i) \\ & \dots \\$$

Important question: How to find inned.
$$pillis$$
?
Repeals on F.
F finite field $2/pZ = iF_p$ of pelements
p prime # in Z.
Sieve method $F = iF_2 = 10, ig$
deg 0 No.
deg 1. X. X+1.
deg 2. X². X²xX X²XX+1. X²X 1.
Find products of deg-1 polynomials
dug 3. X³. X³XX, X³XX+1. X³X 1.
 $X^{3}XX^{2}$, $X^{3}XX^{2}XX$, $X^{3}XX^{2}$

In PID, we look at the ideal
$$(f, g)$$

so $(f, g) = (d)$,

=)
$$d|f$$
. $d|g$, and if
 $s|f$, $s|g$, =) $(s) = (f, g)$
=) $(s) \supseteq (a) =$) s/d .
= $r.s \in R$, $s.t$. $rf + sg = d$.

DWP can be used to find d, t. S. g=fq+r assume dyf = dyg. (f, g) = (f, r)max (dyf, dyn) < max (degg, degf) Next time ZET] Ze is not a feld ZIX) is not PIID but is still UPD