代数1H班作业11

2023年8月3日

题 1. Let A be a 3×3 matrix with elements in rational numbers and $A^5 = I$. Find all the possible A.

题 2. Let $A \in M_n(F)$ be a $n \times n$ matrix over a field F. Let $D \subset M_n(F)$ be the set of matrices commuting with A.

- 1. Under what conditions on its elementary divisors, the set D consists of only polynomials of A. Try to find sufficient and necessary conditions.
- 2. Under what conditions on its elementary divisors, any nonzero matrix $B \in D$ is invertible. Try to find sufficient and necessary conditions.

题 3. (丘赛 2011) Let V be a finite-dimensional vector space over \mathbb{R} and $T: V \to V$ be a linear transformation such that

- 1. the minimal polynomial of T is irreducible;
- 2. there exists a vector $v \in V$ such that $\{T^i v \mid i \geq 0\}$ spans V.

Show that V contains no non-trivial proper T-invariant subspace.

题 4. Let T a linear transformation on vector space V. Under what conditions on its elementary divisors, any T-invariant subspace W has an T-invariant subspace W' such that $W \oplus W' = V$.

29 5. (Harvard Qualifying exam 1996) Let $M \in \mathcal{M}_n(\mathbb{C})$ be a complex $n \times n$ matrix such that M is similar to its complex conjugate \overline{M} ; i.e., there exists $g \in GL_n(\mathbb{C})$ such that $\overline{M} = gMg^{-1}$. Prove that M is similar to a real matrix $M_0 \in \mathcal{M}_n(\mathbb{R})$. 题 6. Prove that two matrices A and B over rational numbers are similar in $M_n(\mathbb{Q})$ if and only if they are similar in $M_n(\mathbb{C})$.

- **题 7.** 1. Prove that the square root of $A \in M_n(\mathbb{C})$ exists if A is invertible.
 - 2. For $n \geq 2$, give examples of $A \in M_n(\mathbb{C})$ such that the square root of A does not exist.

Counter example in functional analysis. (From Sam Walters' twitter)

Given any bounded connected open subset D of the complex plane \mathbb{C} , one has the complex Hilbert space $\mathcal{H}(D)$ of all analytic functions $f: D \to \mathbb{C}$ that are square integrable and with inner product $||f||_2^2 = \int_D |f(z)|^2 dx dy < \infty$, $\langle f, g \rangle = \int_D f(z)\overline{g(z)} dx dy$ where dx dy is the usual area (Lebesgue) measure, and $f, g \in \mathcal{H}(D)$. On this Hilbert space the position operator $Q: \mathcal{H}(D) \to \mathcal{H}(D)$ is defined by (Qf)(z) = zf(z) (which simply multiplies f(z) by z). It is easy to show that Q is a continuous linear operator.

定理 1 (Halmos-Lumer-Schaffer, 1953). The position operator Q has a (continuous) operator square-root if, and only if, \sqrt{D} is a disconnected set.

Here, the square-root of the set D is $\sqrt{D} := \{z \in \mathbb{C} : z^2 \in D\}$. The theorem implies that if D is chosen so that \sqrt{D} is connected, then Q has no square-root. Example: if D is the open ring $D = \{z \in \mathbb{C} : 1 < |z| < 2\}$, its square-root is $\sqrt{D} = \{w \in \mathbb{C} : 1 < |w| < \sqrt{2}\}$ which is connected. In this case it follows that the operator Q is invertible and has no square-root. In particular, Q cannot be an exponential ($Q \neq e^T$ for any operator T).

19 8. Let A be square matrix over a field. Show that A and A^T are similar over this field.

19. Let g be a bilinear form on a real vector space V. Prove that if g satisfies g(x,y) = 0 if and only if g(y,x) = 0, then g is either symmetric or alternating.

10. Artin chapter 8 1.1. Show that a bilinear form \langle , \rangle on a real vector space V is a sum of a symmetric form and a skew-symmetric form. (skew-symmetric means alternating)

題 11. Let F be field that $2 \neq 0$ with automorphism σ of order 2. Denote by $\sigma(z) = \overline{z}$. Field theory tells us that there is an element a in F such that $\sigma(a) = -a$ (You can try to prove this yourself if you are interested). Let g be Hermitian form (skew-Hermitian form) on a F-vector space V, prove that $a \cdot g$ is a skew-Hermitian form (Hermitian form). Here skew-Hermitian form means $B(v, w) = -\overline{B(w, v)}$.

12. Lang Chapter XV, 1. Here we choose σ to be complex conjugation.

1. Let E be a finite dimensional space over the complex numbers, and let

$$h: E \times E \to \mathbb{C}$$

be a hermitian form. Write

$$h(x,y) = g(x,y) + if(x,y)$$

where g, f are real valued. Show that g, f are \mathbb{R} -bilinear, g is symmetric, f is alternating.

 Let E be finite dimensional over C. Let g : E × E → C be ℝ-bilinear. Assume that for all x ∈ E, the map y → g(x, y) is ℂ-linear, and that the R-bilinear form

$$f(x,y) = g(x,y) - g(y,x)$$

is real-valued on $E \times E$. Show that there exists a hermitian form h on E and a symmetric \mathbb{C} -bilinear form ψ on E such that $2ig = h + \psi$. Show that h and ψ are uniquely determined.