代数1H班作业13

2023年8月3日

题 1 (Hermann Weyl's question). Let A and B be two 2×2 Hermitian matrices with eigenvalues $\lambda_1 \leq \lambda_2$ and $\mu_1 \leq \mu_2$. Please find the possible range of eigenvalues for A + B in terms of λ_i, μ_i . (感兴趣的同学可以思考, 不用交, How about 3×3 matrices? The general case was solved by Allen Knutson and Terence Tao. https://www.ams.org/notices/200102/fea-knutson.pdf)

题 2. Let A_i be a rotation with angle θ_i in 3-dimensional Euclidean space fixing origin. Prove that the composition A_1A_2 is still a rotation with angle α . Find the possible range for α in terms of θ_i .

题 3. Let $(F^{\times})^2$ be nonzero elements in F with square roots and $F^{\times}/(F^{\times})^2$ be the quotient group. Let G be the Gram matrix for a nondegenerate bilinear form g on V. Prove that $g \mapsto \det G \in F^{\times}/(F^{\times})^2$ only depends on g. We will denote this by determinant $\det(g)$

19 4. Let F be a field with characteristic not equal to 2 and V be a vector space over F with non degenerate symmetric bilinear form g. Prove that the orthogonal sum of (V, g) and (V, -g) is isometric to a hyperbolic space.

题 5. Let F be a field with characteristic not equal to 2 and V be a vector space over F with symmetric bilinear form g. Assume dim V = 2. Prove that (V,g) is hyperbolic if and only if det $g = -1 \in F^{\times}/(F^{\times})^2$.

题 6. Let p be an odd prime number. Classify two dimensional symmetric bilinear forms on $(\mathbb{F}_p)^2$.

题 7. Prove that the dimension of maximal totally isotropic subspace in (V, g) is a constant. Here totally isotropic subspace W being maximal means if there is totally isotropic subspace W' containing W, then W' = W.

19 8. Prove that a non-degenerate bilinear form (V, g) is orthogonal sum of a hyperbolic space and an anisotropic subspace W, and the isometry class of W is uniquely determined by (V, g).

19. Define an alternating form ω on $W = V \oplus V^*$ similar as hyperbolic space by $\omega((v_1, f_1), (v_2, f_2)) = f_1(v_2) - f_2(v_1)$ for any $v_i \in V, f_i \in V^*$. The group Sp(W) is the isometry group of (W, ω) .

- 1. Show that the linear isomorphisms of W induce isometries of (W, ω) . Use this to find an injective group homorphism $GL(V) \to Sp(W)$.
- 2. Prove that when dimension of W is 2, then $SL(W) \cong Sp(W)$.
- 3. Let $W^* = (V \oplus V^*)^* = V^* \oplus V$ equip with similar alternating form induced by $(V^*)^* = V$. Show that if $F \in Sp(W)$, then $F^* \in Sp(W^*)$.
- 4. Let $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ and $Sp(2n, F) = \{A \in GL(2n, F) \mid A^T J A = J\}$. Prove that if $A \in Sp(2n, F)$, so is A^T .
- We call a subspace L ⊂ W such that ω |_L= 0 an isotropic subspace.
 Find all the possible dimensions of maximal isotropic subspaces. Such subspaces are called Lagrangian subspaces.

题 10. Prove the following identities for Pffafian. For a $2n \times 2n$ skewsymmetric matrix A and $\lambda \in F$

$$pf(A^{T}) = (-1)^{n} pf(A).$$
$$pf(\lambda A) = \lambda^{n} pf(A).$$
$$pf(A^{2m+1}) = (-1)^{nm} pf(A)^{2m+1}.$$

Prove the Pffafian is an invariant function on the space of skew-symmetric matrices under the orthogonal group action. In other words, pf(A) = $pf(BAB^{-1})$ for any $B \in O(2n)$. (感兴趣同学可以思考,不用交,所有 关于反对陈矩阵元素的多项式函数,如果在 O(2n) 作用下不变,则一定是 写作特征多项式的系数以及 Pffafian 的多项式。对奇数维呢?)

- 题 11. Artin Chapter 8, 5.4
- 题 12. Artin Chapter 8, 6.4
- 题 13. Artin Chapter 8, 8.1
- 题 14. Artin Chapter 8, 8.3