代数1H班作业14

2022年12月22日

In the following, K is a field such that $char(K) \neq 2$, and (V,g) is a finite dimensional vector space over field K with nondegenerate bilinear form g.

题 1. Consider isomorphism classes of finite dimensional vector spaces over K. We can define addition by taking direct sum. What is the abelian group obtained from Grothendieck construction.

2. Show the product structure on the extended square class group $Q(K) = \mathbb{Z}/2\mathbb{Z} \times K^{\times}/(K^{\times})^2$ defines an abelian group. In other words, $a_i \in \mathbb{Z}/2\mathbb{Z}$ and $b_i \in K^{\times}/(K^{\times})^2$, we define $(a_1, b_1) \cdot (a_2, b_2) = (a_1 + a_2, (-1)^{a_1 a_2} b_1 b_2)$. Verify this defines a group structure.

题 3. In class, we proved that $W(\mathbb{F}_p) \cong Q(\mathbb{F}_p)$. Please complete the last part of the structure theorem about Witt group for finite fields. Prove that the extended square class group for a finite field $Q(\mathbb{F}_p)$ is isomorphic to

- 1. If $p \equiv 1 \mod 4$, $Q(\mathbb{F}_p) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 2. If $p \equiv 3 \mod 4$, $Q(\mathbb{F}_p) \cong \mathbb{Z}/4\mathbb{Z}$.

Find (V,g) representing the four elements $W(\mathbb{F}_p)$ and describe the ring structure induced by tensor product.

题 4. For (V,g) over finite field $K = \mathbb{F}_p$, is every element $a \in \mathbb{F}_p$ representable by a = g(v,v) for some nonzero vector $v \in V$? Please find those (V,g) having this proposition and those who doesn't.

25. If K is a subfield in F, we can view symmetric matrices with entries in K as symmetric matrices with entries in F. Show that this induces group homomorphisms $GW(K) \to GW(F)$ and $W(K) \to W(F)$. Find examples such that the homomorphisms are

- 1. isomorphisms.
- 2. not injective.
- 3. not surjective.

题 6. For field K, if any two-dimensional (V,g) is isotropic, prove that any element $a \in K$ has a square root $b \in K$ such that $b^2 = a$. Calculate GW(K) and W(K) in this case.