代数1H班作业2

2022 年 9 月 16 日

- **1.** Find the number of isomorphism classes of actions of S_4 on [5].
- **2.** Prove that there is no transitive action of S_6 on [7]. (How about S_7 and [8]?)
- **12.** Suppose that the map $f: G \longrightarrow G$ by $a \mapsto a^{-1}$ is an automorphism of group G, then G is abelian.
- **12.** Let G be a group generated by real valued functions $f = \frac{1}{x}$ and $g = \frac{x-1}{x}$ via composition of functions. Prove that G is isomorphic to S_3 .
- **5.** Classify subgroups and normal subgroups of D_n for $n \geq 3$.
- **18.** Example 2. By the action of G on $(\mathbb{F}_2)^2$.
- **12.** Second Isomorphism Theorem. Let H be a normal subgroup of group G and K be a subgroup of G. Prove
 - 1. $HK = \{hk | h \in H, k \in K\}$ is a subgroup of G.
 - 2. $H \cap K$ is a normal subgroup of K.
 - 3. There is an isomorphism $HK/H \cong K/H \cap K$.
- **18.** Let O_1, \dots, O_k be all the conjugacy classes in a finite group G. Choose $x_i \in O_i$ and let $C_i = \{g \in G | gx_ig^{-1} = x_i\}$ (which is called the centralizer of x_i). Denote $n_i = |C_i|$. Prove

$$\frac{1}{n_1} + \frac{1}{n_2} + \dots + \frac{1}{n_k} = 1$$

- **18 9.** Artin, Chapter 6, 8.1 Does the rule $P * A = PAP^T$ define an operation of $GL(n,\mathbb{R})$ on the set of real $n \times n$ matrices? (Here P^T means the transpose of P)
- **题 10.** 定义 $PGL(2,\mathbb{F}_3) = GL(2,\mathbb{F}_3)/D$. 其中 $D = \{\lambda I_5 \mid \lambda \in \mathbb{F}_5^{\times}\}$. 证明 $PGL(2,\mathbb{F}_3) \cong S_4$. 提示: 考虑 $GL(2,\mathbb{F}_3)$ 在 $(\mathbb{F}_3)^2$ 的所有一维子空间组成的集合上的作用.
- 题 11. 令 G 是一个群, \mathbb{R}^{\times} 是 \mathbb{R} 中非零元素在域的乘法下组成的群。考虑由 $G \to \mathbb{R}$ 的所有映射组成的 \mathbb{R} -线性空间 V. 假设 S 是由有限个 $G \to \mathbb{R}^{\times}$ 的群同态组成的集合. 证明 S 中的元素在 V 上线性无关.
- **题 12.** 证明有限群 G 是循环群当且仅当对任意正整数 n, G 至多只有一个阶数为 n 的子群.
- **题 13.** (Semidirect product) Let H and K be two groups and $\phi: K \to \operatorname{Aut}(H)$ be a group homomorphism. Define a binary operation on $H \times K$ by $(h,k)(h',k') = (h\varphi(k)(h'),kk')$. Check this binary operation gives a group structure. Prove that the subsets $\{e_H\} \times K$ and $H \times \{e_K\}$ are subgroups of this group and $H \times \{e_K\}$ is a normal subgroup. Find one example that $\{e_H\} \times K$ is not a subgroup.
- **14.** Prove that $GL(n,\mathbb{C})$ is isomorphic to a subgroup of $GL(2n,\mathbb{R})$.
- **题 15.** 证明 \mathbb{C}^{\times} 同构于 \mathbb{C}/\mathbb{Z} . 其中 \mathbb{C}^{\times} 是 \mathbb{C} 中非零元素组成的乘法群. \mathbb{C} 和 \mathbb{Z} 是加法群.
- **题 16** (思考题,不用交). 证明 $PGL(2,\mathbb{F}_5) \cong S_5$.
- **题 17** (思考题,不用交,在学完模论之后有更多工具可以做). Let G be the group $GL(3, \mathbb{F}_2)$.
 - 1. How many conjugacy classes does G have?
 - 2. Show that G has exactly two conjugacy classes of size 24.