代数1H班作业6

2022年10月20日

29 1. Prove there is a unique ring homomorphism $\phi: \mathbb{Z} \to R$. Assume $\ker \phi = (m)$ with $m \ge 0$. Then m is called the characteristic of R. Prove that the characteristic of an integral domain must be a prime number. Prove that the number of elements in a finite field must be a power of its characteristic.

题 2 (Formal power series). Let F be a field. Define F[[x]] to be the set of formal power series $f(x) = a_0 + a_1x + a_2x^2 + \cdots$ with $a_i \in F$. The ring structure on F[[x]] is defined similarly as ring of polynomials.

- 1. Prove that F[[x]] is a Euclidean domain with size function $\sigma(f) = i$ being the smallest degree of x^i with nonzero coefficient a_i .
- 2. Find the units in F[[x]].
- 3. Artin Chapter 11, 3.10, Determine all ideals of the ring F[[t]] of formal power series with coefficients in a field F (see Exercise 2.2).
- 4. Define F((x)) to be the set of Laurent series f(x) = ∑_{i≥n} a_ixⁱ where n varies in Z. For example f(x) = -x⁻²+x⁻¹+1+x+x²+x³+···xⁿ+ ···. The ring structure on F((x)) is defined similarly as polynomials. Prove that F((x)) is a field.

题 3 (Artin Chapter 11, 3.8). Let R be a ring of prime characteristic p. Prove that the map $R \to R$ defined by $x \rightsquigarrow x^p$ is a ring homomorphism. (It is called the Frobenius map.)

题 4 (Artin Chapter 11, 3.9). 1. An element x of a ring R is called nilpotent if some power is zero. Prove that if x is nilpotent, then 1 + x is a unit.

2. Suppose that R has prime characteristic $p \neq 0$. Prove that if a is nilpotent then 1 + a is unipotent, that is, some power of 1 + a is equal to 1.

题 5 (Fractions). Let *R* be an integral domain. Consider a set *X* = $\{(a,b)|a,b \in R, b \neq 0\}$. Define a relation on *X* by $(a,b) \sim (c,d)$ if and only if ad = bc.

- 1. Prove that this is an equivalence relation.
- Denote by ^a/_b the equivalence class containing (a, b) and it is called a fraction. The set of fractions is denoted by Frac(R) and there is a map f: R → Frac(R) defined by a → ^a/₁. Try to define a field structure on F such that the map f is an injective ring homomorphism. This is called the fraction field of R.
- Prove that if there is an injective ring homomorphism R → F with F being a field. Then this homomorphism factors through R → Frac(R) → F.
- 4. Let F be a field. Prove that Frac(F[[x]]) is isomorphic to F((x)).

题 6 (Artin Chapter 11, 4.3). Try to identify the following rings with forms you think simpler.

- 1. $\mathbb{Z}[x]/(x^2-3, 2x+4),$
- 2. $\mathbb{Z}[i]/(2+i),$
- 3. $\mathbb{Z}[x]/(6, 2x-1)$
- 4. $\mathbb{Z}[x]/(2x^2-4, 4x-5)$
- 5. $\mathbb{Z}[x]/(x^2+3,5)$.

10 7. Classify all the maximal ideals and prime ideals of $\mathbb{R}[x]$.

19 8. Prove that the ring $\mathbb{Z}[\omega]$ is a Euclidean domain. Here $\omega = e^{\frac{2\pi\sqrt{-1}}{3}}$.

- **19.** Prove that the ring $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain, hence PID.
- 题 10. Prove that $\mathbb{C}[x, y]$ is not a PID.

题 11 (Product ring). Let R and R' be rings. There is a ring structure on the product $R \times R'$ defined by (a, a') + (b, b') = (a + b, a' + b') and (a, a')(b, b') = (ab, a'b'). This is called the product ring $R \times R'$.

- 1. What is the multiplicative identity in product ring $R \times R'$?
- 2. An idempotent element e of a ring S is an element in S such that $e^2 = e$. Prove that the principal ideal (e) is itself a ring with identity element e.
- 3. If e is an idempotent element, then 1-e is also an idempotent element.
- 4. Prove that $(1,0) \in R \times R'$ is an idempotent element.
- 5. If e is an idempotent element, Prove that S is isomorphic to the the product ring $(e) \times (1 e)$.
- Prove that there is a bijection between the set of prime ideals in R×R' and disjoint union of prime ideals in R and prime ideals in R'.

题 12. Artin, Chapter 11, 6.8 Let I and J be ideals of a ring R such that I + J = R.

- 1. Prove that $IJ = I \cap J$.
- Prove the Chinese Remainder Theorem: For any pair a, b of elements of R, there is an element x such that x ≡ a mod I and x ≡ b mod J. (Here the notation x ≡ a mod I means x − a ∈ I.
- 3. Prove that if IJ = 0, then R is isomorphic to the product ring $R/I \times R/J$. (Hint: consider the natural homomorphism from $R \to R/I \times R/J$.
- 4. Describe the idempotents corresponding to the product decomposition in (c).

题 13. Artin Chapter 11, 5.1 Let $f = x^4 + x^3 + x^2 + x + 1$ and let α denote the residue of x in the ring $R = \mathbb{Z}[x]/(f)$. Express $(\alpha^3 + \alpha^2 + \alpha)(\alpha^5 + 1)$ in terms of the basis $(1, \alpha, \alpha^2, \alpha^3)$ of R. 题 14. Use Hibert'sNullstellensatz to determine all the maximal ideals in $\mathbb{C}[x,y]/(xy)$.

题 15. Let $\mathbb{Z}[\sqrt{-3}] = \{m + n\sqrt{-3} | m, n \in \mathbb{Z}\}$. Is $(\sqrt{-3}+2)$ a maximal ideal in $\mathbb{Z}[\sqrt{-3}]$? Why?

题 16. Artin Chapter 11, 8.3 Prove that $\mathbb{F}_2[x]/(x^3 + x + 1)$ is a field, but $\mathbb{F}_3[x]/(x^3 + x + 1)$ is not a field.

题 17 (Artin Chapter 11, 9.13). Let ψ : $\mathbb{C}[x, y] \to \mathbb{C}[t]$ be a homomorphism that is identity on \mathbb{C} and sends $x \mapsto x(t)$, $y \mapsto y(t)$ such that x(t) and y(t) are not both constant. Prove that kernel of ψ is principal ideal.

题 18 (Artin Chapter 11, M.7). Let X denote the closed unit interval [0, 1], and let R be the ring of continuous functions $X \to \mathbb{R}$.

- Let f₁,..., f_n be functions with no common zero on X. Prove that the ideal generated by these functions is the unit ideal. Hint: Consider f₁² + ··· + f_n².
- 2. Establish a bijective correspondence between maximal ideals of R and points on the interval.