代数1H班作业7

2022年11月9日

- 題 1. Prove that $\mathbb{Z}[i]/(3)$ is a field.
- **题 2.** Give an example of irreducible polynomial f(x) of degree 2 in $\mathbb{F}_3[x]$. Use f(x) to construct an example of a field consisting of 9 elements.
- **5.** Decide whether or not $x^4 + 6x^3 + 9x + 3$ is irreducible in $\mathbb{Q}[x]$.
- 題 4. Factor the integral polynomial $x^5 + 2x^4 + 3x^3 + 3x + 5$ in $\mathbb{F}_2[x]$, $\mathbb{F}_3[x]$ and $\mathbb{Q}[x]$.
- **题 5** (Artin Chapter 12, 2.9). Let F be a field. Prove that the ring $F[x,x^{-1}]$ of Laurent polynomials (Chapter 11 , Exercise 5.7) is a principal ideal domain. (Hint: use ring homomorphism $\phi \colon F[x] \to F[x,x^{-1}]$ and pull-back of ideals.)
- **题 6.** 假设 $x \in \mathbb{Q}$ 是某一个首一整系数多项式的根,则 x 是整数。
- 题 7. 假设 D 是一个正整数.
 - 1. 验证 $\mathbb{Z}[\sqrt{-D}] = \{a + b\sqrt{-D} \mid a, b \in \mathbb{Z}\}$ 是一个 \mathbb{C} 的子环.
 - 2. 求 $\mathbb{Z}[\sqrt{-D}]$ 的乘法可逆元全体.
 - 3. 在 $\mathbb{Z}[\sqrt{-5}]$ 中验证 $2,3,1\pm\sqrt{-5}$ 是不可约元。请指出哪些是素元,为什么?
 - 4. 证明 $\mathbb{Z}[\sqrt{-D}]$ 中的非零素理想都是极大理想。(Hint: Use ring homomorphism $\mathbb{Z} \to \mathbb{Z}[\sqrt{-D}]$ and pull back of ideals.)

- **B** 8. Prove that a prime number p can be written as $p = m^2 + 2n^2$ with $m, n \in \mathbb{Z}$ if and only if $x^2 + 2$ has a root in \mathbb{F}_p . (In fact, this is true if and only if p = 2 or $p \equiv 1, 3 \mod 8$, proved by Fermat.)
- **题 9.** 求一组多项式方程 $f^2+g^2=h^2$ 在 $\mathbb{C}[t]$ 上的非平凡解,即 $f,g,h\in\mathbb{C}[t]$ 满足 $\deg f,\deg g,\deg h\geq 1$ 且 $\gcd(f,g,h)=1$. (所有解可以是什么形式?)
- **题 10.** 尝试描述 $\mathbb{C}[x,y]$ 的所有素理想。
- **28.** 11. Let F be a field and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in F[x]$. Define the derivative of f similarly as calculus. $f'(x) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \cdots + a_1$. For $f(x), g(x) \in F[x]$, prove
 - 1. (fg)' = fg' + f'g.
 - 2. $(f(g(x)))' = f'(g(x)) \cdot g'$.
 - 3. gcd(f, f') = 1 if and only if in the irreducible factorization of f, there are no factors with multiplicities.
- **12.** Let p be a prime number. Prove that $f(x) = x^p x 1 \in \mathbb{F}_p[x]$ is irreducible by the following steps.
 - 1. f(x+1) = f(x)
 - 2. If $g(x) \in \mathbb{F}_p[x]$ and $1 \le \deg g \le p-1$, then $g(x+1) \ne g(x)$.
 - 3. Let $f = g_1 \cdots g_k$ be irreducible factorization of f with monic factors. Prove that g_i are distinct.
 - 4. Let $a \in \mathbb{Z}/p\mathbb{Z}$. Prove that $a \cdot g_i(x) = g_i(x+a)$ defines an action of C_p on the set $\{g_1 \cdots g_k\}$.
 - 5. Using enumeration formulas of group operation to prove that f(x) is irreducible.

(In fact, for $n \ge 2$, the polynomial $f(x) = x^n - x - 1 \in \mathbb{Z}[x]$ is irreducible.)