代数1H班作业9

2022 年 11 月 16 日

- 题 1. Artin, Chapter 14, 1.4
- 题 2. Artin, Chapter 14, 2.1
- 题 3. Artin, Chapter 14, 2.2
- 题 4. Artin, Chapter 14, 2.4
- **B** 5. Assume Cayley-Hamilton theorem holds for any fields, prove Cayley-Hamilton theorem for any commutative ring R. In other words, let matrix $A \in M_n(R)$, and characteristic polynomial $f(\lambda) = \det(\lambda I M) = \lambda^n + s_{n-1}\lambda^{n-1}\cdots + s_0 \in R[\lambda]$. Prove that f(A) = 0.
- **18.** The coefficients of characteristic polynomial can define functions of $s_i \colon M_n(R) \to R$. Prove that s_i satisfies $s_i(AB) = s_i(BA)$.
- 题 7. Artin, Chapter 14, 6.1
- 题 8. Artin, Chapter 14, 6.2
- **B** 9. Prove that \mathbb{Q}/\mathbb{Z} is not a finitely generated \mathbb{Z} -module. How about $\mathbb{C}(t)/\mathbb{C}[t]$ as a $\mathbb{C}[t]$ module?
- **10.** Let M be a R-module and $N \subset M$ be a submodule. Prove that $M \cong N \oplus (M/N)$ if M/N is a free R-module.
- 题 11. Give an example of non-noetherian ring.
- **12.** Let R be the ring of algebraic integers in imaginary quadratic extension of \mathbb{Q} . If a R-module is generated by n-elements, how many generators are needed to generate its submodule? Try to give an estimate on the minimal number of generators needed.

- **题 13.** Artin, Chapter 14, M.8
- **B** 14. We call a module cyclic if it is generated by one element. Classify cyclic $\mathbb{R}[t]$ -modules.