代数2H班作业1

2023年8月2日

题 1. Prove that the polynomial $x^4 + 3x + 3$ is irreducible polynomial over the field $\mathbb{Q}[\sqrt[3]{2}]$.

- 题 2. Find the degree of field extension
 - 1. $[\mathbb{Q}[\sqrt{p}, \sqrt{q}]:\mathbb{Q}]$ where p and q are two distinct prime numbers.
 - 2. $\left[\mathbb{Q}\left[\sqrt[3]{2},\sqrt{2}\right]:\mathbb{Q}\right]$

题 3. Find the irreducible polynomial of $\sqrt[3]{2} + \sqrt{3}$ over \mathbb{Q} .

29 4. We call two extensions K_1 and K_2 of F isomorphic if there exists a field isomorphism $\varphi \colon K_1 \to K_2$ such that $\varphi|_F \colon F \to F$ is identity. Classify the isomorphism classes of degree-two extensions (quadratic extensions) of \mathbb{Q} .

题 5. Consider quadratic extensions K of F with char F = 2. Prove that either $K = F[\alpha]$ with $\alpha^2 \in F$ and $\alpha \notin F$ or $K = F[\alpha]$ with $\alpha^2 - \alpha \in F$ and $\alpha \notin F$. Can two cases of two different types above be isomorphic?

题 6. Classify degree-two extensions of $\mathbb{F}_2(x)$.

题 7. Determine whether a regular 9-gon is constructible or not by ruler and compass.

题 8. Find the degree [K:F] of the splitting field K of f(x) over F.

- 1. $F = \mathbb{Q}, f(x) = x^5 2$
- 2. $F = \mathbb{F}_p, f(x) = x^p x 1.$

19. Let K be the splitting field of a degree-n polynomial f(x) over F. Prove that the degree [K : F] divides n!. Can you find cases such that [K : F] = n! for each integer n?

题 10. Determine whether the following three fields are isomorphic.

- 1. The splitting field of $x^2 t^3$ over $\mathbb{Q}(t)$.
- 2. The splitting field of $x^2 t^5$ over $\mathbb{Q}(t)$.
- 3. The splitting field of $x^2 + t^2$ over $\mathbb{Q}(t)$.