代数 2 H 班 作业 10

2023年8月2日

We always denote by R a commutative ring.

B 1. Define the dimension of a topological space X as follows. Let $\phi \neq X_0 \subsetneq X_1 \subsetneq X_2 \cdots \subsetneq X_n$ be a chain of irreducible closed subsets of X. We call n the length of this chain. Then dim X is defined to be the maximal length of such chains of irreducible closed subsets in X. Let X = Spec(R), and define dim R = dim Spec R. Please write down a definition of for dimension dim X using prime ideals of R. Find dim R for PID R. Calculate dim $\mathbb{C}[x, y]$.

19 2. In last homework, you showed that there is an one-to-one correspondence between radical ideals of R and closed subsets of Spec(R) by $I \mapsto Z(I)$. Under this correspondence, describe the operation on ideals when we take union of finitely many close subsets.

- 题 3. 1. Prove that R has a unique maximal ideal m if and only if $R \setminus m$ is the set of units of R. (We call such R a local ring.)
 - Let p be a prime ideal of R. Prove that R_p is a local ring with maximal ideal pR_p and R_p/pR_p is isomorphic to the fractional field of R/p.
- 题 4. A&M chapter 3, ex 3.
- 题 5. A&M chapter 3, ex 7.
- 题 6. A&M chapter 3, ex 8.
- 题 7. 1. Consider Spec(R) and $f, g \in R$. Show that if open subsets $U_f \subset U_g$, there is a natural restriction map $R_g = R[g^{-1}] \rightarrow R[f^{-1}] = R_f$. Especially when $U_f = U_g$, prove that $R_g \cong R_f$.

Let p be a prime ideal of R. We have the following description of local ring R_p. Consider all f ∈ R such that p ∈ U_f. We define an equivalence relation on the disjoint union R_f, (p ∈ U_f) by a ∈ R_f ~ b ∈ R_g iff there is open subset U_h ⊂ U_g ∩ U_f and p ∈ U_h, such that the restrictions of a and b in R_h are equal. Show that there is a natural ring structure on such equivalence classes and it is isomorphic to R_p. (We call R_p the "germ" of "functions" at p, or the stalk of the structure sheaf defined by R.)

19 8. Assume $f_1, \dots, f_n, f \in R$. Assume $U_f = \bigcup_{i=1}^n U_{f_i}$. We still use f_i to denote the image of f_i in R_f under the restriction map $R \to R_f$. Prove that $R_f[f_i^{-1}] \cong R_{f_i}$.

Use this to show the sheaf property for R on open set U_f . In other words, let $\phi_i \colon R_f \to R_{f_i}, \phi_{ij} \colon R_{f_j} \to R_{f_i f_j}$ be the restriction maps. The sequence

$$0 \to R_f \to \prod_{i=1}^n R_{f_i} \to \prod_{1 \le i,j \le n} R_{f_i f_j}$$

is exact. The map from $R_f \to \prod_{i=1}^n R_{f_i}$ is the restriction map $a \mapsto (\phi_i(a))_i$. And $R_{f_i} \to \prod_{1 \le i,j \le n} R_{f_i f_j}$ is defined by $(a_i)_i \mapsto (\phi_{ij}(a_j) - \phi_{ji}(a_i))_{ij}$.

题 9 (选做). State and prove the sheaf property for R-module M and find the stalk of this sheaf at $p \in \text{Spec}(R)$.

10. A sequence of morphisms among R-modules $A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \xrightarrow{f_3} A_4 \cdots A_n$ is said to be exact if $\operatorname{im} f_i = \ker f_{i-1}$. Consider the sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C$.

- 1. Prove that this sequence is exat if and only if A is isomorphic to ker g under the map f.
- Prove the following universal property of exact sequence 0 → A → B ⊕ C. If there is a morphism h: P → B between R-modules and g ∘ h = 0, then there exists a unique morphism h
 i. P → A, such that h = f ∘ h
 . Conversely, if the sequence satisfies this property, then it is exact.

3. For a morphism $g: B \to C$, construct a natural bijection between $Hom_R(P, \ker g)$ and subset of $Hom_R(P, B)$ defined by

$$\{h \in Hom_R(P, B) \mid g \circ h = 0\}$$

4. Let $f: A \to B$ be morphism between two *R*-modules. Define coker $f = B/\inf f$. Construct a natural bijection between $Hom_R(\operatorname{coker} f, P)$ and subset of $Hom_R(B, P)$ defined by

$$\{h \in Hom_R(B, P) \mid h \circ f = 0\}$$