代数 2 H 班 作业 11

2023年8月2日

We always denote by R a commutative ring.

题 1. Read Eisenbud Appendix A5.1, A5.3 and definition of ajoints in the introduction part of A5.2

题 2. Calculate $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z}$ for positive integers m and n.

29 3. Let V be a free R-module with basis $x, x \in X$ and W a free R-module with basis $y, y \in Y$. Show that the tensor product of V and W is free with basis $x \otimes y$. (Try to think about how to view this from universal properties of tensor product and free modules.)

题 4. Let M be a R module. Prove that both $Hom_R(-, M)$ and $Hom_R(M, -)$ are left exact. In other words, If

$$0 \to A \to B \to C$$

is exact, then the induced sequence

$$0 \to Hom_R(M, A) \to Hom_R(M, B) \to Hom_R(M, C)$$

is exact.

If

$$A \to B \to C \to 0$$

is exact, then the induced sequence

$$0 \to Hom_R(C, M) \to Hom_R(B, M) \to Hom_R(A, M)$$

is exact. (It is not mandatory, but it is recommended to use the adjoint property to prove this)

29 5. In general, tensor product does not commute with direct product. Consider \mathbb{Z} module $\prod_{n\geq 1} \mathbb{Z}/n\mathbb{Z}$. Construct a non-torsion element in $\prod_{n\geq 1} \mathbb{Z}/n\mathbb{Z}$. Show that $(\prod_{n\geq 1} \mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}$ is not equal to zero and $\prod_{n\geq 1} (\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}) = 0$. (You can use the theorem about localization of a module and tensor product $M[S^{-1}] \cong M \otimes_R R[S^{-1}]$, it will be proved later in class)

29 6. Let A and B be two R algebras. Let $\pi_1: A \to A \otimes_R B, a \mapsto a \otimes 1$ and $\pi_2: B \to A \otimes_R B, b \mapsto 1 \otimes b$ be two homomorphisms of R-algebras. Show the universal property of $A \otimes_R B$. In other words, if there is a R-algebra C with $f_1: A \to C$ and $f_2: B \to C$, then there exists a unique homomorphism of R-algebra $f: A \otimes_R B \to C$ such that $f_i = f \circ \pi_i$.

题 7. Simplify $\mathbb{C}[t] \otimes_{\mathbb{C}} \mathbb{C}[t]$, $\mathbb{C}[t] \otimes_{\mathbb{C}[t]} \mathbb{C}[t]$ and $\mathbb{C}[t, s] \otimes_{\mathbb{C}[t]} \mathbb{C}[t, s]$. Here $\mathbb{C}[t]$ and $\mathbb{C}[t, s]$ are $\mathbb{C}[t]$ -modules via the natural embedding.

题 8. Here we introduce another definition of tensor product and prove that it is the same as the one defined in class.

Let M and N be two R-modules and G be an abelian group. We call a map $f: M \times N \to G$ "R-balanced" if the map is \mathbb{Z} -bilinear and also satisfies f(rm, n) = f(m, rn) for any $r \in R$, $m \in M$ and $n \in N$. The set of such maps is denoted by $Hom_{R-balance}(M \times N, G)$.

1. Show that there is a bijection between

 $Hom_{R-balance}(M \times N, G) \cong Hom_{R}(M, Hom_{\mathbb{Z}}(N, G))$

Here the R-module structure on $Hom_{\mathbb{Z}}(N,G)$ is given by $(r\phi)(n) = \phi(rn)$ for any $\phi \in Hom_{\mathbb{Z}}(N,G)$.

2. Construct an abelian group $M \otimes N$ such that there is an natural bijection between

$$Hom_{\mathbb{Z}}(M \otimes N, G) \cong Hom_R(M, Hom_{\mathbb{Z}}(N, G)).$$

Try to write it as quotient group of free abelian group with basis $M \times N$ quotient by some relations. Denote by $m \otimes n$ for the image of $(m, n) \in M \times N$ in $M \otimes N$. State the universal property of $M \otimes N$.

- Use the universal property to prove that r · m ̃⊗n = (rm) ̃⊗n gives a well defined R-module structure on M ̃⊗N. Prove that the natural map M × N → M ̃⊗N is R bilinear under this R-module structure.
- 4. Show that $M \otimes N \cong M \otimes N$ as *R*-module.

(Hint, use the map $M \times N \to M \tilde{\otimes} N$ and universal property of $M \otimes N$ to construct a map $F \colon M \otimes N \to M \tilde{\otimes} N$ and vice versa)