代数 2 H 班 作业 12

2023年8月2日

We always denote by R a commutative ring.

29 1. Let M be finitely generated R-module. Prove that any surjective Rmodule morphism $\phi: M \to M$ is an isomorphism. Does similar property holds for injective morphism? (Hint: consider the R[t]-module defined by ϕ and apply Caley-Hamilton theorem for I = (x) and identity operator.)

- 题 2. A&M Chapter 2, Exercise 3
- 题 3. A&M Chapter 2, Exercise 4
- 题 4. A&M Chapter 2, Exercise 10
- 题 5. A&M Chapter 2, Exercise 11

29 6. Assume M is a flat R-module. Prove that for any exact sequence $N_1 \to N_2 \to \cdots \to N_m$ of R-modules, the corresponding sequence $M \otimes N_1 \to M \otimes N_2 \to \cdots \to M \otimes N_m$ is exact. (Hint: use kernel, image, cokernel to decompose the exact sequence into short exact sequences.)

题 7. Let 0 → A \xrightarrow{f} B \xrightarrow{g} C → 0 be short exact sequence of R-modules. Prove that the following are equivalent

- 1. There is homomorphism between R-modules $h: B \to A$ such that $h \circ f = id_A$.
- 2. There is homomorphism between R-modules $p: C \to B$ such that $g \circ p = id_C$.
- f(A) has a complement in B, in other words, there is a submodule of C' of B, such that B is the direct sum of f(A) and C'.

If one of the conditions holds, we call such a short exact sequence splits. Find an example of non-split short exact sequence of \mathbb{Z} -modules.

12 8. We define a R-module P to be projective if and only if $Hom_R(P, -)$ is exact. In other words, for any short exact sequence $0 \to A \to B \to C \to 0$ of R-modules, the corresponding sequence

$$0 \to Hom_R(P, A) \to Hom_R(P, B) \to Hom_R(P, C) \to 0$$

is exact. Prove that P is projective if and only if it is a direct summand of a free module. (Hint: if P is projective, construct a surjective morphism from free module F to P, show that $0 \rightarrow \ker f \rightarrow F \rightarrow P \rightarrow 0$ splits.) Prove that any projective module P is flat.

\overline{B} 9. Use Nakayama's lemma to prove that if R is a local ring with maximal ideal m, and M is a finitely generated projective R-module, then M is free.

- 1. Let $x_1 \cdots x_n \in M$ form a R/m basis for $M \otimes R/m$. Prove that $x_1 \cdots x_n$ are also generators for M.
- 2. Use $x_1 \cdots x_n \in M$ to construct a surjective morphism $\mathbb{R}^n \to M$. Prove that $\mathbb{R}^n \cong M \oplus N$ for some module N.
- 3. Prove that N = 0.

题 10. Let R be a noetherian ring and M is a finitely generated projective module. Prove that

- 1. M_p is projective R_p -module.
- 2. M_p is free R_p -module (This is called locally free).
- 3. There exists $f_1 \cdots f_n \in R$ such that U_{f_i} covers Spec R, and each localization M_{f_i} is free R_{f_i} -module. (This is called locally free in the strong sense.)