代数 2 H 班 作业 13

2023年8月2日

We always denote by R a commutative ring.

题 1. Let R be a UFD, prove that R is normal (integral closed in its fractional field.)

Integrality has many geometric propositions. In the following, we state and prove these properties. Recall we define the Krull dimension of a topological space X using irreducible closed subsets. Let $\phi \neq X_0 \subsetneq X_1 \subsetneq$ $\dots \subsetneq X_n$ be a chain of irreducible closed subsets of X. Then $\dim_{\text{Krull}} X$ is defined to be the supremum of length n of such chains. For any commutative ring R, we define $\dim_{\text{Krull}} R = \dim_{\text{Krull}} \text{Spec}(R)$. From the correspondence between irreducible closed subsets and prime ideals, we know that $\dim_{\text{Krull}} R = \sup\{n|p_0 \subsetneq p_1 \subsetneq \dots \subsetneq p_n, p_i \in \text{Spec } R\}$. Two basic building blocks are important to us, $\dim_{\text{Krull}} k = 0$ for a field k and $\dim_{\text{Krull}} R = 0, 1$ for a PID R.

题 2. If $R \to A$ is an integral ring homomorphism, prove that Spec $A \to$ Spec R is a closed mapping, i.e. the image of a close subset is closed. (Reduce to integral ring extension and use going-up)

15 3. Use "Going-up" and "Incomparability" to prove that if $R \subset A$ be an integral ring extension, then $\dim_{\mathrm{Krull}} A = \dim_{\mathrm{Krull}} R$. (How about the case of integral ring homomorphism?)

We say a ring homomorphism $A \to B$ is finite if B is a finite A-module via this ring homomorphism. Or we can also say B is finite over A. In particular, any finite ring homomorphism is integral.

题 4. Let $A \to B \to C$ be ring homomorphisms. Show that if B is finite over A and C is finite over B, then C is finite over A.

题 5. Let $A \to B$ be ring homomorphism and B is a finitely generated Aalgebra under this ring homomorphism. If B is integral over A, prove that B is finite over A.

B 6. Let k be a field with infinitely many elements. Let $B = k[y_1, \dots, y_m]/J$ J be a finitely generated k-algebra and $J \neq 0$. Prove that there are m-1k-linear combinations of $y_1 \cdots y_m$, denoted by z_1, \cdots, z_{m-1} such that B is finite over the k-subalgebra generated by z_1, \cdots, z_{m-1} . (See A&M chapter 5, exercise 16 for more hint on the construction, assume there exists a polynomial $f \in J \neq 0$ in n variables such that $f(y_1, \dots, y_{m-1}, y_m) = 0$. Let F be the homogeneous part of highest degree in f. Since k is infinite, there exist $\lambda_1, \dots, \lambda_{m-1} \in k$ such that $F(\lambda_1, \dots, \lambda_{m-1}, 1) \neq 0$. Put $y'_i = y_i - \lambda_1 y_m$ $(1 \leq i \leq m-1)$. Show that y_m is integral over the ring $A' = k[y'_1, \dots, y'_{m-1}]$)

B 7 (Noether normalization). Let k be a field with infinitely many elements and $A = k[x_1 \cdots x_n]/I$ is a finitely generated k-algebra. Prove that there exist k-linear combinations of $x_1 \cdots x_n$, denoted by y_1, \cdots, y_m such that the ring homomorphism $R = k[t_1 \cdots t_m] \rightarrow A, t_i \mapsto y_i$ is injective and finite (hence an integral ring extension). For example, A = k[x,y]/(xy) is an integral ring extension over R = k[x + y]. (Geometrically speaking, there is a linear subspace V of k^n such that the algebraic variety defined by I is mapped "nicely" (surjective closed mapping with finite fiber) onto V.) (Hint: Let m be the minimal number such that there exists y_1, \cdots, y_m such that $R = k[t_1 \cdots t_m] \rightarrow A, t_i \mapsto y_i$ is an integral ring homomorphism. First show this minimal value exists. Then show that this ring homomorphism is injective.)

This conclusion is still true for k finite field and y_i allowing to be polynomials of x_1, \dots, x_n , if you are interested, see Eisenbud page 282, lemma 13.2. The key trick is due to Nagata.

题 8. Let k be a field with infinitely many elements. Show that $\dim_{\mathrm{Krull}} k[x_1, \cdots, x_n] = n$. (Use induction and previous conclusions in the homework)

题 9. Let $\phi: R \to A$ be a finite ring homomorphism. Prove that Spec $A \to$ Spec R has finite fibers. In other words, for any $p \in$ Spec R, there are only finitely many $q \in$ Spec A such that $\phi^{-1}(q) = p$.

- 1. Reduce the question to finite ring extension, i.e. ϕ injective.
- 2. Use localization to reduce this to R a local ring with maximal ideal p.
- 3. Let k = R/p be the quotient field. Prove that the tensor product of *R*-algebras $A \otimes_R k$ is a finite-dimensional k-vector space.
- 4. Prove that Spec $A \otimes_R k$ has Krull-dimension zero and has only finitely many maximal ideals. (Hint: it is integral over k and Noetherian.)
- 5. Prove that there is a one-to-one correspondence between preimages of p in Spec A and Spec $A \otimes_R k$. (Hint: use the universal property of R-tensor product. The ring homomorphism $A \to A/q$ and $R/p \to A/q$ induce a ring homomorphism $A \otimes_R k \to A/q$ and vice versa.)

This proof uses the idea of "fiber product" in algebraic geometry. The underlying tool is tensor product of algebras.

See A&M chapter 5, exercises 12, 13, 14, 15 for counting of fibers in Field and Galois theory.