代数 2 H 班 作业 14

2023年8月2日

We always denote by R a commutative ring.

\underline{\mathfrak{B}} 1. Let R[x] be a Jacobson ring. Prove that R is a Jacobson ring. In the previous exercises, you proved that the Jacobson radical of R[x] is equal to its nilradical. So taking R a non-Jacobson ring, you obtain an example R[x] whose Jacobson radical is equal to its nilradical but not Jacobson.

题 2. Let R be a ring. Let $X_0 = \operatorname{Spec}_m R$ be the subset of $X = \operatorname{Spec} R$ consisting of all the closed points of X. Prove that R is Jacobson if and only if for all closed subset Z of X, we have $Z \cap X_0$ being dense in Z.