代数2H班作业2

2023年8月2日

题 1 (Artin 15.7.14). Count the number of irreducible polynomials in $\mathbb{F}_p[x]$ of degree n.

题 2 (Artin 15.7.3). Find a 13th root of 2 in \mathbb{F}_{13} .

题 3. Let F be a finite field. Prove that any irreducible polynomial $f(x) \in F[x]$ over a finite field has no multiple roots in any extension K of F.

题 4. Let $f(x) \in \mathbb{C}((x))$. Prove that there is a solution to equation $y^n - f(x) = 0$ for $y \in \mathbb{C}((x^*))$.

25 (Artin 15.M.1). Let $K = F(\alpha)$ be a field extension generated by a transcendental element α , and let β be an element of K that is not in F. Prove that α is algebraic over $F(\beta)$.

题 6. Let $F \subset K \subset L$ be field extensions. Let $\alpha_1, \dots, \alpha_n \in L$. Assume K is algebraic over F. Prove that $K(\alpha_1, \dots, \alpha_n)$ is algebraic over $F(\alpha_1, \dots, \alpha_n)$.

题 7 (Lang V.26). Let k be a field, f(x) an irreducible polynomial in k[x], and let K be a finite normal extension of k. If g, h are monic irreducible factors of f(x) in K[x]. Show that there exists an automorphism σ of K over k (i.e. element in $\operatorname{Aut}_k(K)$) such that $\sigma(f) = g$. Give an example when this conclusion is not valid if K is not normal over k.

题 8 (思考题). Let $Q(x) \in \mathbb{C}(x)$ be a non-constant rational function. Find the degree of field extension $[\mathbb{C}(x) : \mathbb{C}(Q(x))]$.

题 9. Let K/F be a finite extension of fields. Prove that K/F is normal if and only if for any irreducible polynomial $f(x) \in F[x]$, the irreducible factors of f(x) in K[x] have the same degree.

{\mathfrak B} 10. Let K and L be two extensions of F and K is a normal extension. Prove that the extension generated by K and L is "well-defined", in other words, independent from the common extension for K and L. Show an example that this fails when K is not normal.

题 11. Let K be a normal extension of F and L be an intermediate extension $F \subset L \subset K$. Show that any F-map from L to K extends to K.