代数2H班作业3

2023年8月2日

题 1. Let K be an algebraic extension of F and K_s be the intermediate extension consisting of separable elements over F. Prove the following

- 1. The extension K_s/F is separable.
- 2. The extension K/K_s is pure inseparable, i.e. for all $\alpha \in K$, there exists positive integer e such that $\alpha^{p^e} \in K_s$.
- 3. If K/F is finite, then $|Hom_F(K, \overline{F})| = [K_s : F]$.
- 4. If K/F is normal, prove that K_s/F is normal.

题 2. Prove that for simple algebraic extension $F[\gamma]$ of F, there are only finitely many intermediate extension $F \subset L \subset F[\gamma]$.

20 3. Let k be a field with characteristic $p \neq 0$. Let K = k(t, u) and $F = k[t^p, u^p]$. Prove that if F[t + au] = F[t + bu] for $a, b \in k$, then a = b. Hence if k is an infinite field, there are infinite intermediate extensions $F \subset L \subset K$.

题 4. Let F be a field. Prove that

$$Aut_F(F(x)) = \{x \mapsto \frac{ax+b}{cx+d} \mid \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} \neq 0\}$$

and $Aut_F(F(x)) \cong PGL(2, F)$ as groups.

29 5. Let $\sigma: x \mapsto \frac{1}{x}$ and $\tau: x \mapsto e^{\frac{2\pi\sqrt{-1}}{n}}x$ be automorphisms in $Aut_{\mathbb{C}}(\mathbb{C}(x))$. Prove that the group H generated by σ and τ is finite and identify this group with finite groups you know. Find the fixed field $\mathbb{C}(x)^{H}$. **20** 6. Find a subgroup of $Aut_F F(x_1, \dots, x_n)$ which is isomorphic to PGL(n+1, F) and find an element not in this subgroup when $n \ge 2$.

题 7. Prove that F being perfect is equivalent to that all finite extensions of F are separable.

10 8. Let K/F be a finite extension. Prove that $Aut_F(K)$ divides [K : F].

题 9. Let F be a field with finite characteristic p and finite extension K/F. Denote by K^p be the image of Frobenius morphism of K. Prove that K/Fbeing separable is equivalent to $FK^p = K$.