代数2H班作业4

2023年8月2日

1. Let E and L be two finite extensions of F in a common extension. Is it always true that $[EL : L] = [E, E \cap L]$? If not, please provide a counter-example.

B 2. Find all the subextensions of $\mathbb{Q}\left[e^{\frac{2\pi\sqrt{-1}}{17}}\right]/\mathbb{Q}$. Try to find the primitive element in each subextension. (Optional question: write $\cos\frac{2\pi}{17}$ by formula involving only rational numbers, $+, -, \times, \div$ and square root.)

题 3. Find the Galois group of polynomial $x^4 - 2$ over \mathbb{Q} . (you can write your answer as generators and relations of the group, or the action on roots, or identity it with groups you know)

B 4. Let F be a field of characteristic p > 0. For any $a \in F$, the polynomial $x^p - x - a \in F[x]$ either splits in F or irreducible. Compute the Galois group of this polynomial over F. (Conversely, if E/F is a Galois extension of degree p, E is a splitting field of $x^p - x - a$ for some $a \in E$. We will prove this later).

题 5. Find the intermediate fields between $\mathbb{C}(t)$ and $\mathbb{C}(t^n + \frac{1}{t^n})$. Try to find the primitive element in each subextension.

29 6. Given a finite Galois extension K/F, consider a subextension L. We have the following two constructions to find a normal extension related to L/F. One is to take the minimal normal extension over F containing L, (called normal closure). The other is to find the smallest subextension E of F such that L/E is normal. Explain the corresponding operations on groups under Galois correspondence.

20 7 (Milner's book Fields and Galois Theory). Let F be a field of characteristic 0. Show that $F(X^2) \cap F(X^2 - X) = F$ (intersection inside F(X)). [Hint: Find automorphisms σ and τ of F(X), each of order 2, fixing $F(X^2)$ and $F(X^2 - X)$ respectively, and show that $\sigma\tau$ has infinite order.]

29 8 (Milner's book Fields and Galois Theory). Let p be an odd prime, and let ζ be a primitive pth root of 1 in \mathbb{C} . Let $E = \mathbb{Q}[\zeta]$, and let $G = \operatorname{Gal}(E/\mathbb{Q})$; thus $G = (\mathbb{Z}/(p))^{\times}$. Let H be the subgroup of index 2 in G. Put $\alpha = \sum_{i \in H} \zeta^i$ and $\beta = \sum_{i \in G \setminus H} \zeta^i$. Show:

- 1. α and β are fixed by H;
- 2. if $\sigma \in G \setminus H$, then $\sigma \alpha = \beta, \sigma \beta = \alpha$.

Thus α and β are roots of the polynomial $X^2 + X + \alpha\beta \in \mathbb{Q}[X]$. Compute $\alpha\beta$ (or $\alpha - \beta$) and show that the fixed field of H is $\mathbb{Q}[\sqrt{p}]$ when $p \equiv 1 \mod 4$ and $\mathbb{Q}[\sqrt{-p}]$ when $p \equiv 3 \mod 4$.

题 9 (丘赛题目). Let p be a prime number, and let \mathbb{F}_p be the finite field with p elements. Let $F = \mathbb{F}_p(t)$ be the field of rational functions over \mathbb{F}_p . Consider all subfields C of F such that F/C is a finite Galois extension.

- Show that among such subfields, there is a smallest one C₀, i.e., C₀ is contained in any other C.
- 2. What is the degree of F/C_0 ?
- 3. (Optional question), what is C_0 ?

10. Let F be field with characteristic not equal to 2. Let $\alpha \in F^{\times} \setminus (F^{\times})^2$, $a, b \in F$. Let $K = F[\sqrt{\alpha}]$ be a quadratic extension of F and $L = K[\sqrt{a + b\sqrt{\alpha}}]$ a quadratic extension of K. Prove that L/F is Galois with cyclic Galois group if and only if $a^2 - b^2\alpha = c^2\alpha$ for some $c \in F^{\times}$.