代数2H班作业5

2023年8月2日

题 1. Let p, q be prime numbers. Let G be a group of order pq. Prove that G is solvable.

题 2. Find the minimal number n such that there exists a solvable group of order n.

25 3. Let $f \in F[x]$ be a degree-*n* polynomial with roots $\alpha_1, \dots, \alpha_n$. Define the discriminant of f by $D(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2$. The Galois group G_f acts on the roots generates an injective group homomorphism $\rho: G_f \to S_n$. Prove that the image of ρ is in A_n if and only if D(f) is a square in F. Compute D(f) in terms of the coefficients of f when deg f = 2 and deg f = 3.

题 4. Find a degree-3 Galois extension of Q. (分类这种 extension, 供思考, 不用交)

题 5. For a degree-three separable irreducible polynomial $f(x) \in F[x]$. Discuss how to determine the Galois group of G_f over F.

25 6 (Milne). Let f(X) be an irreducible polynomial in $\mathbb{Q}[X]$ with both real and nonreal roots. Show that its Galois group is nonabelian. Can the condition that f is irreducible be dropped?

题 7 (Milne). Let $f(X) = X^5 + aX + b, a, b \in \mathbb{Q}$. Show that $G_f \approx D_5$ (dihedral group) if and only if

- 1. f(X) is irreducible in $\mathbb{Q}[X]$, and
- 2. the discriminant $D(f) = 4^4 a^5 + 5^5 b^4$ of f(X) is a square, and

3. the equation f(X) = 0 is solvable by radicals.

题 8 (Milne). Give an example of a field extension E/F of degree 4 such that there does not exist a field M with $F \subset M \subset E, [M:F] = 2$

题 9 (Milne). Let F be a Galois extension of \mathbb{Q} , and let α be an element of F such that $\alpha F^{\times 2}$ is not fixed by the action of $\operatorname{Gal}(F/\mathbb{Q})$ on $F^{\times}/F^{\times 2}$. Let $\alpha = \alpha_1, \ldots, \alpha_n$ be the orbit of α under $\operatorname{Gal}(F/\mathbb{Q})$. Show:

- 1. $F\left[\sqrt{\alpha_1}, \ldots, \sqrt{\alpha_n}\right]/F$ is Galois with commutative Galois group contained in $(\mathbb{Z}/2\mathbb{Z})^n$.
- 2. $F\left[\sqrt{\alpha_1}, \ldots, \sqrt{\alpha_n}\right]/\mathbb{Q}$ is Galois with noncommutative Galois group contained in $(\mathbb{Z}/2\mathbb{Z})^n \rtimes \operatorname{Gal}(F/\mathbb{Q})$.

20 10. Let n be an integer. Assume F contains n-th root of unity. Let $a \in F$. For each prime $p \mid n$, the element $a \in F$ has no pth root in F. (Or $a \notin F^p$). Prove that $x^n - a$ is irreducible in F[x]. (Similar result still holds if F does not contain n-th root of unity with additional condition that if $4 \mid n$, then $a \notin -4F^4$. See Lang Theorem VI 9.1.)

题 11. Describe the elements in the Galois group of splitting field of $x^8 - 2$ over \mathbb{Q} . Find all the intermediate extensions.

题 12. Find the centralizer of complex conjugation in $Aut_{\mathbb{Q}}(\mathbb{C})$.