代数2H班作业7

2023年8月2日

题 1 (Milne). Let H be a transitive subgroup of S_n containing a transposition and (n-1)-cycle. Prove that $H = S_n$.

题 2 (Milne). Select separable monic polynomials of degree n, f_1, f_2, f_3 with coefficients in \mathbb{Z} with the following factorizations:

- 1. f_1 is irreducible mod 2;
- 2. $f_2 = (degree \ 1) \ (irreducible \ of \ degree \ n-1) \ mod 3;$
- 3. $f_3 = (irreducible of degree 2)(product of 1 or 2 irreducible polynomials of odd degree) mod 5.$

Take

$$f = -15f_1 + 10f_2 + 6f_3.$$

Prove that the Galois group of f over \mathbb{Q} is S_n .

题 3. Prove that every finite abelian group can be realized as the Galois group of K/\mathbb{Q} .

题 4 (Lang). Prove that there are infinitely many non-zero relatively prime integers a, b such that $-4a^3 - 27b^2$ is a square in Z.

题 5. Let K be a finite extension of \mathbb{Q} . Prove that there are only finitely many roots of unity in K.

题 6 (Lang). What is the Galois group over the rationals of the following polynomials:

1. $X^4 + 2X^2 + X + 3$

- 2. $X^4 + 3X^3 3X 2$
- 3. $X^6 + 22X^5 9X^4 + 12X^3 37X^2 29X 15$

[*Hint: Reduce* mod2, 3, 5.]

题 7. Please find an example such that $\Phi_d(x)$ is reducible when modulo some prime number $p \not| d$.

29 8. Let α be an algebraic integer and f(x) its minimal polynomial over \mathbb{Q} . Assume all the roots of f(x) in \mathbb{C} have absolute value 1. Prove that α is a root of unity.[Hint: consider all the powers of α and prove that the coefficients of these minimal polynomials are bounded.]

题 9. Let F be a field and $a_1, \dots, a_n \neq 0 \in F$ be n different element. Prove that there exists $k \in Z$ such that $a_1^k + \dots + a_n^k \neq 0$. Can you require that $k \ge 0$?

25 10 (Milne). Let E be a finite separable extension of F of degree m. Let $\alpha_1, \ldots, \alpha_m$ be a basis for E as an F-vector space, and let $\sigma_1, \ldots, \sigma_m$ be distinct F-homomorphisms from E into a field Ω . Then the matrix whose (i, j) th-entry is $\sigma_i \alpha_j$ is invertible.