代数2H班作业9

2023年8月2日

We always denote by R a commutative ring.

题 1.

定义 1. If $f \in R$ satisfies $f^n = 0$ for some positive integer, we call f a nilpotent element. The set of nilpotent elements of R is called the radical or nilradical of R and denoted by r((0)). More generally, we define $r(I) = \{f \in R \mid \text{there exists positive integer } n, \text{such that } f^n \in I\}$ Prove the following facts about radical.

- 1. r(I) is an ideal of R.
- 2. r(I) is the intersection of all prime ideals of R containing I.
- We call an ideal radical ideal if r(I) = I. Prove that there is a oneto-one correspondence between the set of radical ideals and irreducible closed subets of Spec(R) by I → Z(I). And this map reverses the inclusion relation.
- 题 2 (Atiyah & Macdonald). Prove the following facts about radicals.
 - 1. $r(\mathfrak{a}) \supseteq \mathfrak{a}$
 - 2. $r(r(\mathfrak{a})) = r(\mathfrak{a})$
 - 3. $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
 - 4. $r(\mathfrak{a}) = (1) \Leftrightarrow \mathfrak{a} = (1)$
 - 5. $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}))$

6. if \mathfrak{p} is prime, $r(\mathfrak{p}^n) = \mathfrak{p}$ for all n > 0.

\overline{B} 3 (Atiyah & Macdonald). The Jacobson radical ideal I is defined to be the intersection of all the maximal ideals of R. It can be characterized as follows:

 $x \in I \Leftrightarrow 1 - xy$ is a unit in R for all $y \in R$.

19 4 (Atiyah & Macdonald). Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

25 (Atiyah & Macdonald). Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$. Prove that

- 1. f is a unit in $A[x] \Leftrightarrow a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent. [If $b_0 + b_1x + \cdots + b_mx^m$ is the inverse of f, prove by induction on r that $a_n^{r+1}b_{m-r} = 0$. Hence show that a_n is nilpotent, and then use previous excercise.]
- 2. f is nilpotent $\Leftrightarrow a_0, a_1, \ldots, a_n$ are nilpotent.
- 3. f is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in A such that af = 0. [Choose a polynomial $g = b_0 + b_1 x + \dots + b_m x^m$ of least degree m such that fg = 0. Then $a_n b_m = 0$, hence $a_n g = 0$ (because $a_n g$ annihilates f and has degree < m). Now show by induction that $a_{n-r}g = 0(0 \leq r \leq n)$.]
- 4. f is said to be primitive if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive $\Leftrightarrow f$ and g are primitive.

题 6 (Atiyah & Macdonald). In the ring A[x], the Jacobson radical is equal to the nilradical.

Later we will see that these two are equal for finitely generated algebra R over a field (Hilbert's Nullstellensatz). This actually means that $\operatorname{Spec}_m(R)$ can "recover" $\operatorname{Spec}(R)$. Think about why.

题 7 (参考 Atiyah & Macdonald 第一章 17 题, 选做). Prove that Spec(R) is compact under Zariski topology.

题 8. Let $X = \operatorname{Spec}(R)$ and $f \in R$. Denote by $U_f = X - Z(f)$. Let S = R[x]/(xf-1). Prove that $\operatorname{Spec}(S)$ is homeomorphic to U_f induced by the natural ring homomorphism $R \to S$.

19. Prove the spectrum of product ring $R \times S$ is homeomorphic to the disjoint union Spec(R) and Spec(S).

题 10.

 $\mathbf{z} \mathbf{X} \mathbf{2}$. A topological space X is called Noetherian if it satisfies the descending chain condition for closed subsets: for any sequence

$$Y_1 \supseteq Y_2 \supseteq \cdots$$

- of closed subsets Y_i of X, there is an integer m such that $Y_m = Y_{m+1} = \cdots$. Prove the following
 - 1. The definition is equivalent to every collection of closed subsets of X has a minimal element under inclusion.
 - The definition is equivalent to every open subset of X is compact.[选 做]
 - 3. Every closed subset of Noetherian space X is a finite union of irreducible subsets.
 - 4. If R is Noetherian, then Spec(R) is Noetherian.

题 11. Describe points and closed subsets of $\operatorname{Spec}(\mathbb{C}[x,y]/(x^2+y^2))$ and $\operatorname{Spec}(\mathbb{R}[x,y]/(x^2+y^2))$.