

IMSC 2048 HW4

Due 2026/2/5

January 29, 2026

1 Excercises

1.1 Mandatory part

Excercise 1. Is it true that the conjugacy classes of unitary group $U(2)$ are determined by the trace and determinant? Prove your answer.

Excercise 2.

Definition 1 (Orthogonal Group of Signature (p, q)). Let p, q be non-negative integers. The orthogonal group of signature (p, q) , denoted by $O_{p,q}$, is defined as the group of all linear transformations on \mathbb{R}^{p+q} that preserve the bilinear form

$$\langle x, y \rangle = x_1y_1 + x_2y_2 + \cdots + x_p y_p - x_{p+1}y_{p+1} - \cdots - x_{p+q}y_{p+q},$$

for all $x, y \in \mathbb{R}^{p+q}$.

Let W be the space of real trace-zero 2×2 matrices $W = \{A \in M_{2 \times 2}(\mathbb{R}) | \text{trace}(A) = 0\}$. W has a basis $\mathbf{B} = (w_1, w_2, w_3)$, where

$$w_1 = \begin{bmatrix} 1 & \\ & -1 \end{bmatrix}, w_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, w_3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

1. Show that the symmetric bilinear form defined by $\langle A, A' \rangle = \text{trace}(AA')$ has signature $(2, 1)$. (Hint: use basis \mathbf{B})
2. Prove that $P \star A = PAP^{-1}$ defines a linear group operation of $\text{SL}(2, \mathbb{R})$ on the space W .
3. Use this operation to define a group homomorphism $\varphi : \text{SL}(2, \mathbb{R}) \rightarrow O_{2,1}$.
4. Prove the kernel of this homomorphism is $\{\pm I\}$.

This construction actually shows that $\text{SL}(2, \mathbb{R})$ is a double cover of $\text{SO}_{2,1}^+$, the connected component of $O_{2,1}$ containing the identity matrix. Or equivalently, $\text{PSL}(2, \mathbb{R}) = \text{SL}(2, \mathbb{R})/\{\pm I\}$ is isomorphic to the spin group $\text{SO}^+(2, 1)$. It is an

interesting question to show that the orthogonal group $O_{2,1}$ has four connected components and identify the geometry of each component.

A similar excercise is to relate $SL(2, \mathbb{C})$ to the orthogonal group $O(3, 1)$. see Artin Algebra Chapter 9, 4.8

Excercise 3. Let A be the set of all $n \times n$ upper triangular matrices with real entries and all diagonal entries equal to 1. Find the Lie algebra of A and compute its dimension.

Excercise 4. Show that the intersection of symplectic group $Sp(2n, \mathbb{R})$ and orthogonal group $O(2n, \mathbb{R})$ in $GL(2n, \mathbb{R})$ is isomorphic to the unitary group $U(n)$. Here we use the embedding of these groups into $GL(2n, \mathbb{R})$ as Section Examples of Lie groups and Lie algebras.

Excercise 5. Prove the Jacobi identity of Lie algebra $gl(n, \mathbb{R}) = M_n(\mathbb{R})$ using the properties of the matrix commutator. Here

$$[A, B] = AB - BA.$$

1.2 Optional excercises

Excercise 6. Prove that the Lie algebra of the symplectic group $Sp(2n, \mathbb{R})$ is

$$\mathfrak{sp}(2n, \mathbb{R}) = \{A \in M_{2n}(\mathbb{R}) : A^T J + JA = 0\},$$

where

$$J = \begin{pmatrix} O_n & I_n \\ -I_n & O_n \end{pmatrix}.$$

Excercise 7. Prove the second and the third order term in the Baker-Campbell-Hausdorff formula when X, Y are elements of $M_n(\mathbb{R})$. That is, prove

$$\exp(tX) \exp(tY) = \exp \left(t(X + Y) + \frac{1}{2}t^2[X, Y] + \frac{1}{12}t^3([X, [X, Y]] + [Y, [Y, X]]) + \dots \right)$$

You may use the following expansion of logarithm:

$$\log(I + A) = A - \frac{1}{2}A^2 + \frac{1}{3}A^3 - \dots$$