

IMSC 2048 HW2
Due 2026/1/22

January 15, 2026

1 Excercises

1.1 Useful Exercises

You are required to submit the solutions to problems in this subsection.

Problem 1. *Prove that any skew-symmetric matrix $A \in M_n(\mathbb{R})$ can be orthogonally similar to a block diagonal matrix with blocks of the form*

$$\begin{pmatrix} 0 & -\lambda \\ \lambda & 0 \end{pmatrix}$$

and possibly a 0 block if n is odd. Use this to show that any skew-symmetric matrix over \mathbb{R} is congruent to a block diagonal matrix with blocks of the form

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

and possibly some 0 block.

Problem 2. *Let V be the linear space consisting of all skew-symmetric real matrices of order n .*

1. *For any $A \in V$, prove that $I + A$ is invertible.*
2. *For any $A \in V$, define $f(A) = (I - A)(I + A)^{-1}$. Prove that $f(A)$ is an orthogonal matrix.*
3. *Give a characterization of the image of $f: V \rightarrow O(n)$ in terms of eigenvalues, that is, which matrices can be written in the form $(I - A)(I + A)^{-1}$ for some $A \in V$.*

Problem 3. *Let A be 2×2 real symmetric matrix*

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

Write down an orthogonal matrix Q which diagonalizes A in terms of a, b, c .

Problem 4. Consider the groups $O(2)$, its subgroup $SO(2)$ and group $SO(3)$. Determine whether the following statements are correct. If correct, prove it; if incorrect, provide a counterexample:

1. Two elements in the group $O(2)$ are conjugate if and only if they have the same trace.
2. Two elements in the group $SO(2)$ are conjugate in the group $SO(2)$ if and only if they have the same trace.
3. Two elements in the group $SO(2)$ are conjugate in the group $O(2)$ if and only if they have the same trace.
4. Two elements in the group $SO(3)$ are conjugate if and only if they have the same trace.

Problem 5 (Cartan–Dieudonné theorem). Prove that any orthogonal transformation of Euclidean space $(V, \langle \cdot, \cdot \rangle)$ can be expressed as a composition of at most $\dim V$ reflections.

(The nontrivial part of the original theorem is to show this also holds for any non-degenerate symmetric bilinear form over a field of characteristic not equal to 2.)

Problem 6 (Courant–Fischer–Weyl Min-Max Principle). You may choose to prove either part (1) or part (2).

1. Let $(E, \langle \cdot, \cdot \rangle)$ be an n -dimensional real inner product space. Suppose T is a self-adjoint transformation on E with real eigenvalues $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$. Prove that the eigenvalues of T can be characterized by the following min-max method:

$$\lambda_k = \min \{ \max \{ \langle T(x), x \rangle : x \perp W_k, |x| = 1 \} : W_k \subset E \text{ is a subspace, } \dim W_k = k-1 \}$$

Here, for a fixed $(k-1)$ -dimensional subspace W_k , we first compute the maximum value

$$\max \{ \langle T(x), x \rangle : x \perp W_k, |x| = 1 \}.$$

Then we vary W_k over all $(k-1)$ -dimensional subspaces and take the minimum of these maximum values.

2. Alternatively, you may prove the following special case: Let A be an $n \times n$ real symmetric matrix and v be an arbitrary n -dimensional real column vector, where $|v|$ denotes the vector length under the standard inner product. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be all eigenvalues of A . Prove that:

$$|Av| \leq \max\{|\lambda_1|, |\lambda_2|, \dots, |\lambda_n|\}|v|.$$

1.2 Optional problems

You do not need to hand in these problems, but you are encouraged to discuss and try them.

Problem 7 (Outer automorphisms of $\mathrm{SO}(n, \mathbb{R})$). *An automorphism of a group G is called an inner automorphism if it is of the form $g \mapsto hgh^{-1}$ for some fixed $h \in G$. An automorphism which is not inner is called an outer automorphism. Consider the automorphism of $\mathrm{SO}(n, \mathbb{R})$ defined by $A \mapsto PAP^{-1}$ where $P \in \mathrm{O}(n, \mathbb{R})$ with $\det P = -1$. Is this an inner automorphism or an outer automorphism? Prove your answer. (The answer may depend on n .)*

Problem 8 (Challenge Problem). *You will obtain a standard form for Lorentz transformations on \mathbb{R}^4 . Let e_i ($i = 1, \dots, 4$) be the standard basis for \mathbb{R}^4 . Consider the symmetric bilinear on \mathbb{R}^4 defined by*

$$\langle x, y \rangle = x_1y_1 + x_2y_2 + x_3y_3 - x_4y_4.$$

A basis f_i ($i = 1, \dots, 4$) of \mathbb{R}^4 is called orthonormal if

$$\langle f_1, f_1 \rangle = \langle f_2, f_2 \rangle = \langle f_3, f_3 \rangle = 1, \quad \langle f_4, f_4 \rangle = -1, \quad \langle f_i, f_j \rangle = 0 \text{ if } i \neq j.$$

Suppose T is a Lorentz transformation on \mathbb{R}^4 , that is, T is a linear transformation such that

$$\langle Tx, Ty \rangle = \langle x, y \rangle$$

for all $x, y \in \mathbb{R}^4$. Prove that there exists an orthonormal basis of \mathbb{R}^4 such that the matrix of T is block diagonal with blocks of the following types:

1. *A block of order 1 with entry ± 1 .*

2. *A block of order 2 of the form*

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

3. *a block of order 2 of the form*

$$\pm \begin{pmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{pmatrix} \quad \text{or} \quad \pm \begin{pmatrix} \cosh \theta & \sinh \theta \\ -\sinh \theta & -\cosh \theta \end{pmatrix}.$$

4. *A block A of order 3 with eigenvalue $\lambda = \pm 1$ so that $(A - \lambda I)^3 = 0$ but $(A - \lambda I)^2 \neq 0$.*

Problem 9. *If the Lorentz transformation T in Problem 8 is replaced by a transformation satisfying*

$$\langle Tx, y \rangle = -\langle x, Ty \rangle$$

can you obtain a similar result? State the result and prove it.

Problem 10 (Cauchy Interlacing Theorem). *Let A be an $n \times n$ real symmetric matrix, and let B be an $m \times m$ principal submatrix of A , where $m < n$. If the eigenvalues of A are $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$, and the eigenvalues of B are $\mu_1 \geq \mu_2 \geq \dots \geq \mu_m$, then for all $1 \leq i \leq m$, we have*

$$\lambda_i \geq \mu_i \geq \lambda_{i+n-m}.$$

(Hint: Use the Courant-Fischer-Weyl min-max principle from Problem 6.)

Problem 11 (Sylvester's Criterion). *Use the Cauchy interlacing theorem to prove Sylvester's criterion: A symmetric matrix is positive definite if and only if all its leading principal minors are positive.*