
Algebra 2
Chenglong Yu

January 29, 2026

Contents
1 Introduction1 Introduction 2

2 Bilinear Forms2 Bilinear Forms 2
2.1 Basic Definitions2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Gram Matrices and Congruency2.2 Gram Matrices and Congruency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Symmetric Forms3 Symmetric Forms 5
3.1 Diagonalization of Gram Matrices3.1 Diagonalization of Gram Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Sylvester’s Law of Inertia3.2 Sylvester’s Law of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Positive Definite Forms3.3 Positive Definite Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Euclidean Spaces3.4 Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Gram-Schmidt process and QR Decomposition3.5 Gram-Schmidt process and QR Decomposition . . . . . . . . . . . . . . . . . . . 8

4 Exercises4 Exercises 10
4.1 Useful practices4.1 Useful practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Optional problems4.2 Optional problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Geometry of Euclidean spaces: distance and projection5 Geometry of Euclidean spaces: distance and projection 13

6 Orthogonal Matrices6 Orthogonal Matrices 15
6.1 Spectral theorem6.1 Spectral theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Singular Value Decomposition and Low Rank Approximation7 Singular Value Decomposition and Low Rank Approximation 20
7.1 Low-Rank Approximation and Application: Image Compression7.1 Low-Rank Approximation and Application: Image Compression . . . . . . . . . . 22
7.2 Application: Low-dimensional Fitting (PCA)7.2 Application: Low-dimensional Fitting (PCA) . . . . . . . . . . . . . . . . . . . . 24
7.3 Application: Least Squares Method7.3 Application: Least Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Excercises8 Excercises 27
8.1 Useful Exercises8.1 Useful Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2 Optional problems8.2 Optional problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Hermitian Forms and Unitary Matrices9 Hermitian Forms and Unitary Matrices 29

10 Application of spectral theorem: conics and quadrics10 Application of spectral theorem: conics and quadrics 35

11 Skew-symmetric Bilinear Forms and Symplectic Matrices11 Skew-symmetric Bilinear Forms and Symplectic Matrices 36

1



12 Excercises12 Excercises 38
12.1 Useful Exercises12.1 Useful Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12.2 Optional problems12.2 Optional problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

13 Orthogonal representation of SU(2)13 Orthogonal representation of SU(2) 40

14 Examples of Lie groups and Lie algebras14 Examples of Lie groups and Lie algebras 43

15 Excercies15 Excercies 46
15.1 Mandatory part15.1 Mandatory part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
15.2 Optional excercises15.2 Optional excercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

16 Group representations: basic concepts16 Group representations: basic concepts 47
16.1 Linear operation, Matrix Representations and Conjugacy16.1 Linear operation, Matrix Representations and Conjugacy . . . . . . . . . . . . . 48
16.2 Unitary Representations16.2 Unitary Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
16.3 Invariant Subspaces and Orthogonal Decomposition16.3 Invariant Subspaces and Orthogonal Decomposition . . . . . . . . . . . . . . . . 49
16.4 Irreducible Representations16.4 Irreducible Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
16.5 Semisimplicity16.5 Semisimplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

17 Examples of Group Representations17 Examples of Group Representations 50

18 Constructions of Representations18 Constructions of Representations 51
18.1 Direct Sums and Quotients18.1 Direct Sums and Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
18.2 G-Homomorphisms18.2 G-Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
18.3 Schur’s Lemma18.3 Schur’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
18.4 Dual Representation18.4 Dual Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
18.5 Tensor Product18.5 Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1 Introduction
The course roughly covers the following three parts. You may refer to course website of Math
371 Spring 2020 at UPenn in my personal page for related materials.

Part I: Bilinar forms. Symmetric forms, Hermitian forms, and skew-symmetric forms. Or-
thogonality. Spectral Theorem. Conics and Quadrics. Key examples of classical groups, and
their basic properties. Lie algebra (for such groups).

Part II: Group representations. Irreducible representations and unitary representations.
Characters. Schur’s Lemma. Modules over principal ideal domains. Free modules. Group
rings. Noetherian rings. Structure of Abelian groups. Maschke’s theorem. Constructions of
representations, et cetera.

Part III: Field extensions, algebraic extensions and algebraic closures, splitting fields, separa-
ble and inseparable extensions, Galois extensions, Galois correspondences, cyclotomic extensions,
solvability by radicals, et cetera.

2 Bilinear Forms
2.1 Basic Definitions
Definition 2.1 (Bilinear Form). Let V be a vector space over a field K. A map

〈·, ·〉 : V × V → K
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is called a bilinear form if it is linear in both components. That is:

1. 〈au+ v,w〉 = a〈u,w〉+ 〈v,w〉

2. 〈u, av +w〉 = a〈u,v〉+ 〈u,w〉

for all u,v,w ∈ V and a ∈ K.

Definition 2.2 (Symmetric and Skew-Symmetric Forms). A bilinear form 〈·, ·〉 is called:

1. Symmetric if 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

2. Skew-symmetric (or alternating) if 〈v,w〉 = −〈w,v〉 for all v,w ∈ V .

There are following examples of bilinear forms.

Example 2.1 (Euclidean Space). Let V = Rn. The standard inner product defined by

〈x,y〉st =

n∑
i=1

xiyi = xTy

is a symmetric bilinear form. It allows us to define the length of vectors and the angle between
non-zero vectors.

Example 2.2 (Minkowski Space). Let V = Rn+1. The Lorentz form is defined by

〈x,y〉 = x1y1 + · · ·+ xn−1yn−1 − xn+1yn+1.

This is a symmetric bilinear form used in special relativity.

Example 2.3 (Matrix Space). Let V =Mm×n(R). Define

〈A,B〉 = tr(ATB).

This is a symmetric bilinear form on the space of matrices.

For infinite-dimensional spaces, we have the following example.

Example 2.4. Let V be the space of continuous real-valued functions on [0, 1]. Define

〈f, g〉 =
ˆ 1

0

f(x)g(x) dx.

This is a symmetric bilinear form on V .

2.2 Gram Matrices and Congruency
Next we consider finite-dimensional vector spaces V over a field K with dimV = n < ∞. Let
B = {v1, . . . , vn} be a basis of V .

Definition 2.3 (Gram Matrix). The Gram matrix of a bilinear form 〈·, ·〉 with respect to the
basis B is the matrix G⟨·,·⟩,B ∈Mn(K) defined by:

(G⟨·,·⟩,B)ij = 〈vi,vj〉.

By expansion of bilinearity, we have the following important property.
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Proposition 2.1 (Matrix Representation of Bilinear Forms). If u =
∑
xivi and w =

∑
yjvj

are vectors in V with coordinate vectors x,y ∈ Kn, then the value of the bilinear form can be
computed via matrix multiplication:

〈u,w〉 = xTG⟨·,·⟩,By. (1)

In fact the formula (11) can be used to define bilinear forms from arbitrary matrices A.
So if we consider the space of bilinear forms on V , it has a natural structure of K-vector space

stucture and it is isomorphic to the space of n× n matrices over K. To summarize, we have the
following proposition.

Proposition 2.2 (Matrix representation of bilinear forms). Let Bil(V ) denote the space of
bilinear forms on V . Then Bil(V ) is a vector space over K, and the map

Bil(V ) → Mn(K)

〈·, ·〉 7→ G⟨·,·⟩,B

is a vector space isomorphism between the space of bilinear forms on V and the space of n × n
matrices over K.

The symmetric and skew-symmetric bilinear forms correspond to symmetric and skew-symmetric
matrices, respectively.

Proposition 2.3. Let 〈·, ·〉 be a bilinear form on V and A = G⟨·,·⟩,B is the Gram matrix of 〈·, ·〉
with respect to the basis B. Then:

1. 〈·, ·〉 is symmetric if and only if A is a symmetric matrix, i.e. A = AT .

2. 〈·, ·〉 is skew-symmetric if and only if A is a skew-symmetric matrix, i.e. A = −AT .

The dependence of Gram matrices on the choice of basis is described as follows.

Proposition 2.4 (Change of Basis). Let B = {v1, · · · ,vn} and B′ = {w1, · · · ,wn} be two bases
of V . Let P be the transition matrix from B to B′ (i.e., wj =

∑
i Pijvi). Then the Gram

matrices are related by:
G⟨·,·⟩,B′ = PTG⟨·,·⟩,BP.

Proof. By definition:

(G⟨·,·⟩,B′)jk = 〈wj ,wk〉 = 〈
∑
i

Pijvi,
∑
l

Plkvl〉

=
∑
i

∑
l

Pij〈vi,vl〉Plk

=
∑
i

∑
l

(PT )ji(G⟨·,·⟩,B)ilPlk

= (PTG⟨·,·⟩,BP )jk.

Definition 2.4 (Congruency). Two square matrices A and B are called congruent if there exists
an invertible matrix P such that B = PTAP . It is straightforward to verify that congruency is
an equivalence relation on the set of square matrices.
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Since all the invertible n × n matrices can appear as the change of basis matrix for an n-
dimensional vector space, so two matrices are congruent if and only if they represent the same
bilinear form under two bases.

Remark 2.1. Coordinate change of bilinear forms corresponds to matrix congruency, whereas
linear operators change coordinates via similarity (P−1AP ).

Definition 2.5 (Isometry). Let (V1, 〈·, ·〉1) and (V2, 〈·, ·〉2) be vector spaces equipped with bilinear
forms. A linear map f : V1 → V2 is called an isometry if

〈f(u), f(v)〉2 = 〈u,v〉1

for all u,v ∈ V1.

Theorem 2.1. Two finite-dimensional K-vector spaces with bilinear forms are isometric if and
only if their Gram matrices (under any chosen bases) are congruent.

3 Symmetric Forms
Throughout this subsection, assume 〈·, ·〉 is a symmetric bilinear form on a vector space V over
a field K (where char(K) 6= 2, i.e. 2 is invertible in K).

3.1 Diagonalization of Gram Matrices
The assumption on the characteristic is necessary for the following polarization identity.

Proposition 3.1 (Polarization Identity). The bilinear form is completely determined by its
quadratic form q(v) = 〈v,v〉. Specifically:

〈v,w〉 = 1

2
(〈v +w,v +w〉 − 〈v,v〉 − 〈w,w〉) .

This implies that if 〈·, ·〉 is not identically zero, there must exist some vector v such that
〈v,v〉 6= 0.

Theorem 3.1 (Diagonalization / Orthogonal Basis). There exists a basis {v1, . . . , vn} of V such
that the Gram matrix of 〈·, ·〉 is diagonal. That is, 〈vi,vj〉 = 0 for i 6= j.

Proof. We proceed by induction on n = dimV .

1. Base case: If 〈·, ·〉 ≡ 0, any basis works. If n = 1, any basis works.

2. Inductive step: Assume the statement holds for dimensions < n. If 〈·, ·〉 ≡ 0, we are
done. Otherwise, by the polarization identity, there exists v1 ∈ V such that 〈v1,v1〉 6= 0
(such a vector is called non-isotropic).
Define W = {w ∈ V | 〈v1,w〉 = 0}. This is the orthogonal complement of the line spanned
by v1. Consider the map ϕ : V → K given by w 7→ 〈v1,w〉. Since 〈v1,v1〉 6= 0, the map is
non-zero, hence surjective. Thus dimW = dim(kerϕ) = n− 1.
We claim V = span(v1)⊕W . For any v ∈ V , let

w = v − 〈v,v1〉
〈v1,v1〉

v1.
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Then a direct check shows 〈w,v1〉 = 0, so w ∈ W . Thus v ∈ span(v1) + W . The
intersection is zero because v1 is not in W .
By the induction hypothesis, W admits an orthogonal basis {v2, . . . , vn}. Then {v1,v2, . . . , vn}
is an orthogonal basis for V .

Under this orthogonal basis, the Gram matrix is diagonal:

G =


d1 0 · · · 0
0 d2 · · · 0
...

... . . . ...
0 0 · · · dn

 ,

where di = 〈vi,vi〉.

Remark 3.1. The proof of the diagonalization can also be obtained from the theory of nonde-
generacy criterion on subspaces (see Excercise 4.34.3).

3.2 Sylvester’s Law of Inertia
When K = R, we can scale the basis vectors to normalize the diagonal entries coefficients to be
1, −1, or 0. More precisely, we choose the basis vectors as follows:

• If di > 0, replace vi by 1√
di
vi.

• If di < 0, replace vi by 1√
−di

vi.

• If di = 0, leave vi unchanged.

After this scaling, the Gram matrix becomes diagonal with entries in {1,−1, 0}. In fact, these
numbers are determined by the bilinear form itself, independent of the choice of basis.

Theorem 3.2 (Sylvester’s Law of Inertia). Let 〈·, ·〉 be a real symmetric bilinear form on V .
There exists a basis under which the Gram matrix is diagonal with entries in {1,−1, 0}. Usually,
the basis is ordered such that:

G =

Ip 0 0
0 −Iq 0
0 0 0n−p−q

 .

Furthermore, the integers p (index of positivity) and q (index of negativity) are invariants de-
pending only on 〈·, ·〉, not on the choice of basis.

The triple (p, q, n− p− q) is called the signature of the form.

Proof of Uniqueness. The coordinate transformation allows us to write any symmetric matrix A
as congruent to a diagonal matrix with diagonal entries di ∈ {1,−1, 0}. Suppose we have two
such decompositions yielding indices (p, q) and (p′, q′). Consider the subspaces corresponding to
the basis vectors:

• Basis B = {v1, . . . , vn} gives p positive, q negative terms. Let V + = span(v1, . . . , vp).
Then dimV + = p.
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• Basis B′ = {w1, . . . ,wn} gives p′ positive, q′ negative terms. LetW≤0 = span(wp′+1, . . . ,wn).
Then dimW≤0 = n− p′.

If p > p′, then dimV + + dimW≤0 > n. So the dimension of the intersection

dimV + ∩W≤0 = dimV + dimW≤0 − dim(V + +W≤0) ≥ dimV + dimW≤0 − dimV > 0

Then there is an nonzero vector x ∈ V + ∩W≤0. Write x =
∑p

i=1 aivi =
∑n

j=p′+1 bjwj . Then
〈x,x〉 =

∑
a2i > 0 (from V +) and 〈x,x〉 = −

∑p′+q′

j=p′+1 −b2j ≤ 0 (from W≤0). This is a contra-
diction. Thus p ≤ p′. By symmetry, p′ ≤ p, so p = p′. A similar argument shows q = q′.

Corollary 3.1. Two real symmetric matrices A and B of order n are congruent if and only if
they have the same positive index of inertia and negative index of inertia.

Remark 3.2. Even though the signature (p, q, n− p− q) is unique, the specific orthogonal basis
achieving this signature is not unique. The subspaces V + contributing the positive part (or the
subspaces for the negative part) are not unique. But the subspace corresponding to the zero part
is unique. Try to define this subspace intrinsically. It is called the radical of the form.

3.3 Positive Definite Forms
In the proof of Sylvester’s law of inertia, we have constructed subspaces where the quadratic
form is shows positive and negative properties.

Definition 3.1 (Definiteness). Let V be a real vector space and 〈·, ·〉 be a symmetric bilinear
form.

1. 〈·, ·〉 is positive definite (denoted 〈·, ·〉 > 0) if 〈v,v〉 > 0 for all v 6= 0.

2. 〈·, ·〉 is negative definite (denoted 〈·, ·〉 < 0) if 〈v,v〉 < 0 for all v 6= 0.

3. 〈·, ·〉 is positive semi-definite (denoted 〈·, ·〉 ≥ 0) if 〈v,v〉 ≥ 0 for all v ∈ V .

4. 〈·, ·〉 is negative semi-definite (denoted 〈·, ·〉 ≤ 0) if 〈v,v〉 ≤ 0 for all v ∈ V .

Proposition 3.2. Let V be a finite-dimensional real vector space with a symmetric form 〈·, ·〉.
The form 〈·, ·〉 is positive definite if and only if its index of positivity p equals dim(V ).

The proof for the uniqueness of signature also shows the following intrinsic characterization.

Proposition 3.3 (Characterization of Signature). The positive index of inertia p of a symmetric
form 〈·, ·〉 on V can be characterized by:

p = max{dimW |W ⊆ V is a subspace where 〈·, ·〉|W is positive definite}.

Similarly, the negative index q is the maximal dimension of a subspace where 〈·, ·〉 is negative
definite.

When the symmetric form is positive definite, we also call the corresponding Gram matrix a
positive definite matrix. More properties of positive definite matrices are summarized in the
exercises.
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3.4 Euclidean Spaces
Definition 3.2 (Euclidean Space). A real vector space V equipped with a positive definite sym-
metric bilinear form 〈·, ·〉 is called a Euclidean space or an inner product space.

See Excercise 4.34.3 for the definition of nondegeneracy and that if (V, 〈·, ·〉) is an inner product
space, then it is non-degenerate and all its subspaces are also non-degenerate.

Proposition 3.4. Every Euclidean space of dimension n is isometric to the standard Euclidean
space (Rn, 〈·, ·〉st).

Example 3.1 (Polynomial Space). Let V = Pn(R) = {f(x) ∈ R[x] | deg f ≤ n} (sometimes
denoted R[x]≤n). Define the bilinear form:

〈f, g〉 =
ˆ 1

0

f(x)g(x) dx.

Since
´ 1
0
(f(x))2 dx > 0 for any non-zero polynomial, 〈·, ·〉 is positive definite. Consider the

standard basis {1, x, x2, . . . }. The Gram matrix G under this basis has entries:

Gij = 〈xi−1, xj−1〉 =
ˆ 1

0

xi+j−2 dx =
1

i+ j − 1
.

This matrix is known as the Hilbert matrix.

3.5 Gram-Schmidt process and QR Decomposition
While Sylvester’s theorem guarantees an orthogonal basis, in Euclidean spaces we can construct
an orthonormal basis algorithmically from any given basis.

Definition 3.3 (Orthonormal Basis). A basis {w1, . . . ,wn} of a Euclidean space (V, 〈·, ·〉) is
orthonormal if

〈wi,wj〉 = δij =

{
1 if i = j

0 if i 6= j
.

In terms of matrices, an orthonormal basis corresponds to orthogonal matrices.

Definition 3.4 (Orthogonal Matrix). A square real matrix Q is called an orthogonal matrix
if its column vectors form an orthonormal basis of Rn under the standard inner product. Equiv-
alently, Q is orthogonal if and only if QTQ = I or QQT = I, or all the row vectors of Q form
an orthonormal basis of Rn.

Theorem 3.3 (Gram-Schmidt Process). Let {v1, . . . , vn} be an arbitrary basis of a Euclidean
space V . One can construct an orthonormal basis {w1, . . . ,wn} such that

span(w1, . . . ,wk) = span(v1, . . . , vk)

for all k = 1, . . . , n.

Algorithm. The construction proceeds inductively:

1. Set w̃1 = v1. Since basis vector are not zero, the inner product 〈w̃1, w̃1〉 > 0. Normalize
it to obtain w1:

w1 =
w̃1√

〈w̃1, w̃1〉
.
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2. Set w̃2 = v2 − 〈v2,w1〉w1. This vector is satisfies 〈w̃2,w1〉 = 0. From the construction,
we also know that

span(w̃2,w1) = span(v1,v2).

So w̃2 6= 0. Normalize it:
w2 =

w̃2√
〈w̃2, w̃2〉

.

3. In general, for step k, define

w̃k = vk −
k−1∑
j=1

〈vk,wj〉wj

Then
〈w̃k,wi〉 = 0 for i < k,

Inductively we have

span(w1, · · · ,wk−1), w̃k = span(v1, · · · ,vk−1), w̃k = span(v1, · · · ,vk−1,vk)

so w̃k 6= 0. Then normalize:
wk =

w̃k√
〈w̃k, w̃k〉

.

To summarize, the Gram-Schmidt process constructs an orthonormal basis {w1, . . . ,wn}
from any given basis {v1, . . . , vn} such that the transition matrix from {wi} to {vi} is upper
triangular with positive diagonal entries 1√

⟨w̃i,w̃i⟩
. Upper triangularity follows from the fact that

the subspaces spanned by the first k basis vectors are preserved. So the change of basis matrix
has the form:

P =


p11 p12 · · · p1n
0 p22 · · · p2n
...

... . . . ...
0 0 · · · pnn

 ,

where pii = 1√
⟨w̃i,w̃i⟩

> 0. The transition matrix from the orthonormal basis {vi} back to the
original basis {wi} is then given by P−1, which is also upper triangular with positive diagonal
entries.

(v1,v2, · · · ,vn) = (w1,w2, · · · ,wn)P
−1

In terms of matrices, this is called the QR decomposition of a matrix.

Definition 3.5 (QR Decomposition). If V is the standard Euclidean space Rn, then any basis
(v1,v2, · · · ,vn) gather together to form an invertible matrix A. The orthonormal basis vectors
Q = (w1,w2, · · · ,wn) form an orthogonal matrix. The decomposition above can be rewritten as

A = QR,

where R = P−1 is an upper triangular matrix with positive diagonal entries. This is called the
QR decomposition of the matrix A.

The uniquess of the QR decomposition is stated in Problem 4.24.2
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4 Exercises
4.1 Useful practices
Please submit solutions to the following problems in this section. Some problems help you to
review the material we have learned, and some problems introduce useful concepts and theorems
not covered in class.

Excercise 4.1. Practice the Gram-Schmidt process and the QR decomposition. You can choose
either one of the following two problems to solve.

1. Let V = P≤2(R) be the vector space of real polynomials with degree at most 2. Define an
inner product on V by

〈f, g〉 =
ˆ 1

0

f(x)g(x) dx

Given basis 1, x, x2 for V , use the Gram-Schmidt process to find an orthonormal basis for
V .

2. Calculate the QR decomposition for the matrix

A =

3 2 100
4 0 0
0 0 −5

 .

Excercise 4.2. Prove the uniqueness of the QR decomposition: if A is an n × n invertible
real matrix then there exists a unique n × n orthogonal matrix Q and a unique n × n upper
triangular matrix R with positive diagonal entries such that A = QR. (You only need to prove
the uniqueness part; the existence part is given by the Gram-Schmidt process.)

Excercise 4.3. Let V be a finite-dimensional vector space over field F . Define a symmetric
form on V to be a bilinear form 〈·, ·〉 : V ×V → F similar as the real case. We call the symmetric
form non-degenerate if for any v ∈ V , 〈v,w〉 = 0 for all w ∈ V implies v = 0.

1. Show that the symmetric form 〈·, ·〉 is non-degenerate if and only if for some (and hence
any) basis {v1, . . . , vn} of V , the Gram matrix A = (〈vi,vj〉)1≤i,j≤n is invertible.

2. Assume V has a nondegenerate symmetric form 〈·, ·〉. Let W be a subspace of V . Define
the orthogonal complement of W to be

W⊥ = {v ∈ V : 〈v,w〉 = 0 for all w ∈W}.

Prove that W
⊕
W⊥ = V if and only if the restriction of 〈·, ·〉 on W is non-degenerate.

3. When R is the base field, show that a positive definite symmetric form is non-degenerate.

4. For an inner product space V over R, show that for any subspace W of V , W
⊕
W⊥ = V .

5. In four-dimensional Minkowski space with the Lorentz form, find an one-dimensional sub-
space W such that W and W⊥ do not form a direct sum of the whole space.

Excercise 4.4. In this problem, you will prove the Cauchy-Schwarz inequality for Eu-
clidean spaces in an inner product space V . The norm of an inner product space is
defined by ‖u‖ =

√
〈u,u〉. The Cauchy-Schwarz inequality states that for any u,v ∈ V ,

|〈u,v〉| ≤ ‖u‖ · ‖v‖.

10



Moreover, equality holds if and only if u and v are linearly dependent. You can choose any one
of the following two methods to prove it.

1. Assume v 6= 0. Consider the quadratic function of λ

f(λ) = 〈u− λv,u− λv〉

Show that this function is non-negative and deduce the Cauchy-Schwarz inequality from
this.Show that equality holds if and only if u and v are linearly dependent.

2. There is another method to reduce the Cauchy-Schwarz inequality to two dimensional case.
Assume u and v are linearly independent (otherwise the inequality is trivial). Let W =
span{u,v}. Show that the Cauchy-Schwarz inequality holds in V if it holds in W . Then
prove the Cauchy-Schwarz inequality in two-dimensional inner product space by directly
considering the standard inner product on R2.

Excercise 4.5. We call a symmetric matrix A positive definite if it is the Gram matrix of
any positive definite symmetric form.

1. Prove that a symmetric matrix A is positive definite if and only if there exists an invertible
matrix P such that A = PTP .

2. Show that if A is positive definite, then its determinant is positive.

3. Prove that a two by two symmetric matrix is positive definite if and only if it has positive
trace and positive determinant.

Excercise 4.6. In the following, you will prove the criterion for positive definiteness by
principal minors. A principal minor of a matrix A is the determinant of a square submatrix
obtained by deleting certain rows and the corresponding columns. A leading principal minor
is a principal minor obtained by deleting the last n − k rows and columns for some k. In the
following, show that a symmetric matrix A is positive definite if and only if all its leading principal
minors are positive.

1. Show that if A is positive definite, then all its principal minors are positive. (Hint: consider
the restriction of the corresponding symmetric form on the subspace spanned by the first k
basis vectors.)

2. Use induction to show that if all leading principal minors of A are positive, then matrix A
is positive definite. (Hint: use problem 4.34.3 and induction.)

Excercise 4.7. Let A be a real symmetric matrix where the diagonal elements are all 2, the
elements on the two sub-diagonals are all −1, and all other elements are 0. Prove that A is
positive definite.

Excercise 4.8. Artin chapter 8 1.1. Show that a bilinear form 〈,〉 on a real vector space V is a
sum of a symmetric form and a skew-symmetric form. (skew-symmetric means alternating)

Excercise 4.9. Let g be a bilinear form on a real vector space V . Prove that if g satisfies
g(x,y) = 0 if and only if g(y,x) = 0, then g is either symmetric or alternating.

11



4.2 Optional problems
If you would like to try some additional problems, you can find them here and you do not need
to submit them.

Excercise 4.10. Prove that the Hilbert matrix of order n,

Hn = (
1

i+ j − 1
)n×n

is a positive definite matrix. (Hint: Use the symmetric form in Problem 4.14.1 (1).)

Excercise 4.11. Prove the reversed Cauchy-Schwarz inequality in Minkowski space:
For all v = (v0, v1, . . . , vn),w = (w0, w1, . . . , wn) ∈ Rn+1 satisfying

v20 − v21 − · · · − v2n > 0 and w2
0 − w2

1 − · · · − w2
n > 0,

prove the following inequality

(v20 − v21 − · · · − v2n)(w
2
0 − w2

1 − · · · − w2
n) ≤ (v0w0 − v1w1 − · · · − vnwn)

2

and determine the necessary and sufficient condition for equality to hold.
In terms of the Lorentz form 〈v,w〉 = v0w0−v1w1−· · ·−vnwn, the inequality can be rewritten

as
〈v,v〉〈w,w〉 ≤ 〈v,w〉2.

when 〈v,v〉 > 0 and 〈w,w〉 > 0 (in physics v and w are called time-like vectors and this implies
two time-like vectors have positive product under the Lorentz form).

Hint: Use similar method as in Problem 4.44.4 (2).

Excercise 4.12 (Challenge). In this problem, you will prove the Cartan matrices associated
to ADE Dynkin diagrams are positive definite. For a graph Γ with vertices {v1, · · · ,vn},
consider the n × n real symmetric matrix defined by AΓ = (aij)n×n, where aij = 2 when i = j,
aij = −1 when i 6= j and vi,vj are adjacent (connected by an edge), and aij = 0 otherwise.
Prove that for the following graphs Γ, AΓ is positive definite:

An:
1 2 n− 1 n

Dn:
1 2 n− 3 n− 2

n− 1

n

E6:
1

2

3 4 5 6

12



E7:
1

2

3 4 5 6 7

E8:
1

2

3 4 5 6 7 8

In fact, these graphs are exactly those connected and whose corresponding matrices are
positive definite.

5 Geometry of Euclidean spaces: distance and projection
Cauchy–Schwartz inequality allows us to define angles and lengths in Euclidean spaces, which
leads to the study of geometry in these spaces.

Definition 5.1. Let (V, 〈·, ·〉) be a Euclidean space.

1. For any v ∈ V , the norm (or length) of v is defined as

‖v‖ =
√
〈v,v〉.

2. For any non-zero vectors u,v ∈ V , the angle θ ∈ [0, π] between u and v is defined by

cos θ =
〈u,v〉
‖u‖‖v‖

.

Note that the angle is well-defined due to the Cauchy-Schwartz inequality. When the angle
is π

2 or equivalently when 〈u,v〉 = 0, we say that the two vectors are orthogonal. The norm
function satisfies the following properties:

1. ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 if and only if v = 0.

2. For any scalar c ∈ R and vector v ∈ V , ‖cv‖ = |c|‖v‖

3. (Triangle inequality) For any u,v ∈ V , ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

4. (Pithagorean theorem) For any u,v ∈ V , if u ⊥ v, then ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

By triangle inequality, we can define the distance on V by d(u,v) = ‖u− v‖. The distance
function satisfies the following properties:

1. d(u,v) ≥ 0 for all u,v ∈ V , and d(u,v) = 0 if and only if u = v.

2. d(u,v) = d(v,u) for all u,v ∈ V .

3. (Triangle inequality) For any u,v,w ∈ V , d(u,w) ≤ d(u,v) + d(v,w).

In toplogy, a distance function satisfying the above three properties is called a metric, and such
a space V with metric d is called a metric space. The distance function can induce distance
between subsets of V as follows:

13



Definition 5.2. Let (V, d) be a metric space. For any two subsets A,B of V , the distance
between A and B is defined as

d(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}.

We will consider natural subsets in inner product spaces, for example, in space of functions
with inner products defined by integrals, this is useful when we want to approximate a function
by polynomials or trigonometric functions. Or in space of data points or matrices, the distance
function helps us to construct clustering or compressing algorithms. The most natural form of
subsets are subspaces.

Proposition 5.1. Let (V, 〈·, ·〉) be a Euclidean space, and W be a subspace of V . For any v ∈ V ,
there exists a unique vector w0 ∈W such that

d(v,W ) = d(v,w0).

Moreover, the vector w0 satisfies that v −w0 ∈W⊥.

Proof. By the Gram-Schmidt process, we can find an orthonormal basis {u1, . . . ,uk} of W and
extend it to an orthonormal basis {u1, . . . ,uk,uk+1, . . . ,un} of V . Then any vector v ∈ V can
be written as

v =

n∑
i=1

〈v,ui〉ui.

Define

w0 =

k∑
i=1

〈v,ui〉ui ∈W. (2)

Then for any w ∈W , we have

d(v,w)2 = ‖v −w‖2

= ‖v −w0 +w0 −w‖2

= ‖v −w0‖2 + ‖w0 −w‖2 (since v −w0 ⊥ w0 −w)
≥ ‖v −w0‖2.

Thus, d(v,W ) = d(v,w0). The equality holds if and only if w = w0.

In Problem 4.34.3 of Exercise 44, we have shown that for any subspace W of an inner product
space V , V = W ⊕ W⊥. Thus, any vector v ∈ V can be uniquely written as v = w + w⊥

with w ∈ W and w⊥ ∈ W⊥. The formula (22) also gives an effective way to obtain such a
decomposition via orthonormal basis of W .

Definition 5.3. The map ProjW : v → w0 is called a projection map onto W and it is a linear
transformation satisfying ProjW ◦ProjW = ProjW .

Later a projection map will be an example of symmetric or self-adjoint operator.

Remark 5.1. Notice that the distance function is invariant under translations, i.e., for any
u,v,a ∈ V , d(u + a,v + a) = d(u,v). Thus, Proposition 5.15.1 can also be used to discribe the
distance between a point and an affine subspace (a translation of a subspace).
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6 Orthogonal Matrices
In QR decomposition, we have already seen orthogonal matrices. An invertible n × n real
matrix A can be viewed as a basis of Rn by taking all the column vectors. The column vectors
of an orthogonal matrix form an orthonormal basis of Euclidean space (Rn, 〈·, ·〉st). Another
interpretation of matrices is that they represent linear transformations

TA : Rn → Rn, v 7→ Av.

Under this interpretation, orthogonal matrices represent linear transformations that preserve the
inner product, i.e.,

Proposition 6.1. Any A ∈Mn(R) is orthogonal if and only if

〈TA(u), TA(v)〉st = 〈u,v〉st

for all u,v ∈ Rn.

Proof. For any u,v ∈ Rn, we have

〈TA(u), TA(v)〉st = (Au)T (Av) = uTATAv.

If A is orthogonal, then ATA = I, so 〈TA(u), TA(v)〉st = uTv = 〈u,v〉st. Conversely, if
〈TA(u), TA(v)〉st = 〈u,v〉st for all u,v ∈ Rn, then uTATAv = uTv for all u,v ∈ Rn. When
u = ei and v = ej , this implies that the ij-th entry of ATA is δij , so ATA = I and A is
orthogonal.

Such linear transformations are called isometries under the standard inner product by Def-
inition 2.52.5. More generally,

Proposition 6.2. For an n-dimensional Euclidean space (V, 〈·, ·〉), the isometries on V are
exactly those linear transformations whose matrix representations under any orthonormal basis
are orthogonal matrices.

The proof is similar as Proposition 6.26.2.
All the isometries of V, 〈·, ·〉 form a group under composition. So we have a subgroup of

GL(n,R) consisting of orthogonal matrices.

Definition 6.1. An orthogonal group of order n is defined as

O(n,R) := {A ∈Mn(R) | ATA = I}

For Euclidean space (V, 〈·, ·〉), we also define the orthogonal group as the group of isometries
on the space

O(V ) := {T ∈ GL(V ) | 〈T (u), T (v)〉 = 〈u,v〉 for all u,v ∈ V }

The map determinant is a group homomorphism

det : GL(n,R) → R×

For an orthogonal matrix A, its determinant is equal to ±1, and both ±1 can be achieved. Thus,
we introduce the following normal subgroup of O(n,R) by the kernel of the determinant map.
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Definition 6.2. A special orthogonal group of order n is defined as

SO(n,R) := {A ∈ O(n,R) | det(A) = 1}

The special orthogonal group represents all orientation-preserving isometries of Euclidean
space.

Example 6.1. First by direct computation of orthogonal basis in R2, we know that any orthogonal
matrix in O(2,R) has the form

O(2,R) = {
(
cos θ − sin θ
sin θ cos θ

)
| θ ∈ R}

⊔
{
(
cos θ sin θ
sin θ − cos θ

)
| θ ∈ R}

Computing the determinants, we see that

SO(2,R) = {
(
cos θ − sin θ
sin θ cos θ

)
| θ ∈ R}

represents all rotations by angle θ in R2.
The other coset represents all reflections in R2. One important observation is that the

composition of two reflections is a rotation, i.e., for any two reflection matrices P1, P2 ∈ O(2,R)\
SO(2,R), we have P1P2 ∈ SO(2,R). If the two reflectoin axes form an angle θ

2 , then P1P2 is the
rotation by angle θ.

The concept of reflections can be generalized to higher dimensions.

Definition 6.3 (reflections). A linear transformation T : V → V on a Euclidean space (V, 〈·, ·〉)
is called a reflection if there exists a one-dimensional subspace L ⊂ V such that

(1) T (v) = v for all v ∈ L;

(2) T (w) = −w for all w ∈ L⊥.

Conversely, given any nonzero vector u ∈ V , we can define a reflection T with respect to the line
spanned by u by

T (v) = v − 2
〈v,u〉
〈u,u〉

u.

This vector u is called a normal vector of the reflection. Such a reflection is also be denoted
by su.

From the coset decomposition of O(n,R) by SO(n,R), we know that

O(n,R) = SO(n,R) ∪ P · SO(n,R),

where P =


−1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 is a reflection matrix with determinant −1.
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6.1 Spectral theorem
The classification of similar classes of matrices is equivalently the orbit decomposition of the
conjugation action of GL(n,R) on Mn(R). The congruent classes of matrices are the orbit
decomposition of the congruence action of P ∈ GL(n,R) on A ∈Mn(R) by PTAP . If we restrict
the action to O(n,R), we have the following definitions and theorem.
Definition 6.4.
(1) For A,B ∈Mn(R), we say A,B are orthogonally similar if there exists Q ∈ O(n,R) such

that A = QTBQ (= Q−1BQ).

(2) If A is orthogonally similar to a diagonal matrix, we say A is orthogonally diagonalizable
(over R).
We mainly deal with three special kinds of matrices:
1. symmetric matrices, i.e., AT = A;

2. skew-symmetric matrices, i.e., AT = −A;

3. orthogonal matrices, i.e., ATA = I.
We study their orbits under orthogonal group actions. Among them, symmetric matrices have
the best diagonalization property.
Theorem 6.1 (Spectral Theorem for Real Symmetric Matrices). Real symmetric matrices are
orthogonally diagonalizable.
Proof. Let A ∈Mn(R) with A = AT . We proceed by induction on n. First, we show that A has
a real eigenvalue. Let λ ∈ C be an eigenvalue of A, and let Av = λv for some v ∈ Cn \ {0}.
Then

vTAv = λvTv,

where vTv > 0. Since
(vTAv)T = vTAv,

it follows that λ ∈ R. Since A − λ I is a singular real matrix, the solution v to (A − λ I)v = 0
can be chosen in Rn.

Assuming (v,v) = 1, extend v = v1 to an orthonormal basis of Rn, denoted by

Q1 = (v1,v2, · · · ,vn)

Then
AQ1 = (v1,v2, · · · ,vn)

= (λv1,v2, · · · ,vn)

= (v1 · · ·vn)

(
λ ∗
0 ∗

)
Thus,

A = Q1

(
λ ∗
∗ ∗

)
Q−1

1 = Q1

(
λ ∗
∗ ∗

)
QT

1

Since A is symmetric, the above decomposition actually takes the form

A = Q1

(
λ 0
0 ∗

)
Q−1

1 .

The result follows by induction on n.
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In the proof, we can also obtain a useful proposition of invariant subspace for real linear
transformations. This is essentially because irreducible polynomials over R have degree at most
2.

Proposition 6.3 (Invariant subspace of real linear transformations). Let T : V → V be a linear
transformation on an n ≥ 1-dimensional real vector space V . Then there exists a one-dimensional
or two-dimensional T -invariant subspace of V .

Proof. Let A ∈ Mn(R). Then A has a complex eigenvalue λ = a + b
√
−1 ∈ C with eigenvector

v ∈ Cn \ {0}. Write v = u+
√
−1w with u,w ∈ Rn. Then

A(u+
√
−1w) = (a+ b

√
−1)(u+

√
−1w).

Equating real and imaginary parts, we have

u = au− bw, w = bu+ aw.

So the subspace spanned by u and w is a A-invariant subspace in Rn. For general V , choose a
basis of V and identify V with Rn. The result follows.

The notion of symmetric matrices can be generalized to self-adjoint operators on inner product
spaces and we obtain a more intrinsic proof for the spectral theorem.

Definition 6.5. Let V be a vector space equipped with a symmetric or skew-symmetric bilinear
form g. A linear map T : V → V is called self-adjoint if

g(T (u),v) = g(u, T (v))

holds for all u,v ∈ V .

Proposition 6.4. Let V be a vector space with a symmetric or skew-symmetric bilinear form g.
Suppose T is a self-adjoint linear map. If W ⊂ V is an T -invariant subspace, then W⊥ is also
an T -invariant subspace.

Proof. For any u ∈W⊥ and w ∈W , we have

g(T (u),w) = g(u, T (w)) ∈ g(u,W ) = 0.

Thus T (u) ∈W⊥.

Now assume (V, g) is an inner product space, and T : V → V is a self-adjoint linear map. Let
B = {e1, . . . , en} be an orthonormal basis of V , and let A be the matrix representation of T with
respect to B, i.e.,

T (e1, . . . , en) = (e1, . . . , en)A

From g(T (x), y) = g(x, T (y)), we have:T (e1)...
T (en)

 ·g (e1, . . . , en) =

e1...
en

 ·g (T (e1), · · · , T (en))

That is,

AT

T (e1)...
T (en)

 ·g (e1, · · · , en) =

e1...
en

 ·g (e1, · · · , en)A
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Since B is an orthonormal basis,e1...
en

 ·g (e1, · · · , en) = Gg,B = In,

Thus A = AT . So we have the following proposition.

Proposition 6.5 (Self-adjoint operators and symmetric matrices). Let (V, g) be an inner prod-
uct space and T : V → V be a linear map. Then T is self-adjoint if and only if the matrix
representation of T with respect to any orthonormal basis is symmetric.

Theorem 6.2 (Spectral Theorem for Self-adjoint Operators). Let (V, g) be a finite-dimensional
inner product space over R. Then any self-adjoint operator T : V → V is orthogonally diagonal-
izable, i.e., there exists an orthonormal basis of V consisting of eigenvectors of T .

Proof. Proposition 6.36.3 shows that T has a one-dimensional or two-dimensional invariant subspace
W1 ⊂ V . If W1 is two dimensional, under orthonormal basis of W1, the matrix representation of
T |W1

is symmetric (
a b
b c

)
The characteristic polynomial is

p(λ) = λ2 − (a+ c)λ+ (ac− b2).

The discriminant is
(a+ c)2 − 4(ac− b2) = (a− c)2 + 4b2 ≥ 0.

Thus T |W1
has a real eigenvalue, and hence W1 has a one-dimensional invariant subspace. There-

fore we can assume dimRW1 = 1. The orthogonal complement W⊥
1 is also invariant by Propo-

sition 6.46.4. Using induction on dimR V , we can find an orthonormal basis of V consisting of
eigenvectors of T .

Next, we look at the conjugacy classes of orthogonal group.

Theorem 6.3 (Conjugacy classes of orthogonal matrices). Suppose A ∈ O(n,R). Then A is
orthogonally similar to

diag{
(
cos θ1 − sin θ1
sin θ1 cos θ1

)
,

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
, . . . , 1, . . . ,−1, . . . },

Or equivalently, for any orthogonal transformation T : V → V on an n-dimensional Euclidean
space (V, 〈·, ·〉), there exists an orthonormal basis of V such that the matrix representation of T
with respect to this basis is block diagonal with blocks of the form in SO(2,R), 1 or −1.

Proof. We use the same method as in the proof of Theorem 6.26.2. By Proposition 6.36.3, there exists
a one-dimensional or two-dimensional A-invariant subspace W1 ⊂ Rn. If dimRW1 = 1, then W1

is spanned by an eigenvector of A with eigenvalue 1 or −1 since A is orthogonal. If dimRW1 = 2,
then under an orthonormal basis of W1, the matrix representation of A|W1

is in O(2,R). When
the matrix is in SO(2,R), it is of the form(

cos θ − sin θ
sin θ cos θ

)
.
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When the matrix is not in SO(2,R), it is of the form(
cos θ sin θ
sin θ − cos θ

)
.

The characteristic polynomial is
p(λ) = λ2 − 1.

So the eigenvalues are 1 and −1. Thus, in any case, W1 has a one-dimensional invariant subspace.
The orthogonal complement W⊥

1 is also invariant by Proposition 6.46.4. Using induction on n, we
can find an orthonormal basis of Rn such that the matrix representation of A with respect to
this basis is block diagonal with blocks of the form in SO(2,R), 1 or −1.

Example 6.2. For A ∈ SO(3,R), it is orthogonally similar tocos θ − sin θ 0
sin θ cos θ 0
0 0 1


Let

QTAQ =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


and Q = (v1, v2, v3), then

A(v1, v2, v3) = (v1, v2, v3)

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


So the action of A on R3 is a rotation in the plane spanR{v1, v2}.

Thus we have the following corollary in geometry.

Corollary 6.1. The composition of two rotations of three-dimensional Euclidean space along
two intersecting lines is a rotation.

If we also generalize the concept of rotation to higher dimensions as orthogonal transforma-
tions whose matrix representations under some orthonormal basis has one block in SO(2,R) and
all others are 1 blocks, then we have the following corollary.

Corollary 6.2. The composition of two reflections of an n-dimensional Euclidean space along
two hyperplanes is a rotation.

7 Singular Value Decomposition and Low Rank Approxi-
mation

In previous sections, we gave the structure theorem for self-adjoint operators on a given linear
space, which is also known as the spectral theorem for self-adjoint operators. If T : V →W is a
linear map between two different spaces, how do we find the canonical form of T?

The theory of equivalence canonical forms for matrices tells us that, given a matrix A ∈
Mm×n(R), there exist P ∈ GL(n,R), Q ∈ GL(m,R) such that:

Q−1AP =

(
Ir O
O O

)
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where r = rankA. Now we attach an inner product structure to the linear space, so we hope
that P,Q can be chosen as orthogonal matrices.

Theorem 7.1 (Singular Value Decomposition). Let A ∈ Mm×n(R). There exist P ∈ O(n),
Q ∈ O(m) such that:

A = QDPT ,

where

D =



σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · σr · · · 0
0 0 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · 0 · · · 0


m×n

, σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The σi are called the singular values of A.

Remark 7.1. Suppose A = QDPT is the singular value decomposition of A. Let Q =
(w1, . . . , wm), P = (v1, . . . , vn), then

A =

r∑
i=1

σiwiv
T
i ,

This is a commonly used form of the singular value decomposition.

Proof. We first prove the uniqueness of the singular values: If A = QDPT , then

ATA = Pdiag{σ2
1 , . . . , σ

2
n}PT ,

so σ2
1 , . . . , σ

2
n are the eigenvalues of ATA, which are uniquely determined by A after sorting.

Next, we prove the existence of the singular value decomposition: Since ATA is symmetric,
there exists P ∈ O(n) such that

P−1(ATA)P =

λ1 . . .
λn

 ,

where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Let P = (v1, . . . , vn), then ATAvi = λivi.
We show that Av1, . . . , Avn are mutually orthogonal:

〈Avi, Avj〉Rm = (Avi)
T (Avj)

= vTi (A
TAvj)

= λjv
T
i vj

= λj〈vi, vj〉Rn .

Thus, it is 0 when i 6= j, and λi when i = j.
Assume λ1 ≥ · · · ≥ λr > 0, λr+1 = · · · = λn = 0. Let

wi =
Avi

||Avi||Rm

=
Avi√
λi
, i = 1, . . . , r
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Then w1, . . . , wr are orthonormal. If we denote σi :=
√
λi, then

(Av1, . . . , Avn) = (w1, . . . , wn)



σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · σr · · · 0
0 0 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · 0 · · · 0


m×n

That is,
AP = QD, P ∈ O(n), Q ∈ O(m).

7.1 Low-Rank Approximation and Application: Image Compression
Given a matrix A = (aij)m×n, where aij represents the grayscale of the pixel at (i, j), the amount
of data needed to record this is mn, which is very large when m,n are large. Using SVD, we can
write it as

A =

min(m,n)∑
i=1

σiwiv
T
i

Take k � min(m,n), then we have the approximation

Ak =

k∑
i=1

σiwiv
T
i ,

The storage data amount is now k(m+ n+ 1).
Intuitively, Ak should be ”very close” to A. Next, we describe this strictly. Define the

Frobenius inner product on the matrix space Mm×n(R):

〈A,B〉F = tr(ATB).

Then the distance between matrices A,B is√
〈A−B,A−B〉F =

√∑
i,j

(aij − bij)2.

Under Frobenius inner product, we have the following important theorem about the low-rank
approximation using SVD.
Theorem 7.2 (Eckart-Young, Schmidt). Ak is the closest matrix to A among matrices of rank
≤ k, i.e.,

||A−Ak||F = min
rankB≤k

||A−B||F .

Corollary 7.1. Let A = QDPT and D = diag(σ1, . . . , σn) be the singular value decomposition
of matrix A, then

‖A‖F =
√
σ2
1 + · · ·+ σ2

n,

and
||A−Ak||F =

√
σ2
k+1 + · · ·+ σ2

n.
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Before proving Theorem 7.27.2, we first present some important properties used in the proof.

Lemma 7.1. Given matrices A,B ∈Mm×n(R), for any P ∈ O(n), Q ∈ O(m), we have

〈QAPT , QBP T 〉F = 〈A,B〉F .

Lemma 7.2. Given matrix A ∈Mm×n(R), then

σ1(A) = max
0 ̸=v∈Rn

|Av|Rm

|v|Rn

.

Proof. Consider the symmetric matrix M = ATA. According to the Min-Max principle for
eigenvalues of symmetric matrices, we have

λ1(A
TA) = max

0 ̸=v∈Rn

〈v,ATAv〉Rn

〈v, v〉Rn

= max
0 ̸=v∈Rn

〈Av,Av〉Rm

〈v, v〉Rn

,

Thus,
σ1(A) =

√
λ1(ATA) = max

0 ̸=v∈Rn

|Av|Rm

|v|Rn

.

Lemma 7.3.

(1) For any matrix A ∈Mm×n(R), we have

σℓ(A−Ak) = σk+ℓ(A)

(2) For any matrix A,B ∈Mm×n(R), where rankB ≤ k, then

σℓ(A−B) ≥ σk+ℓ(A)

Proof. (1): Assume the singular value decomposition of A is denoted as

A =

min{m,n}∑
i=1

σiwiv
T
i ,

then

A−Ak =

min{m,n}∑
i=k+1

σiwiv
T
i ,

so σℓ(A−Ak) = σk+ℓ(A).
(2): Assume the singular value decomposition of A is denoted as

A =

min{m,n}∑
i=1

σiwiv
T
i .

We first prove the case ℓ = 1: Let W = spanR{v1, . . . , vk+1}. Since rankB ≤ k, we have
dimkerB ≥ n − k, thus kerB ∩ W 6= ∅. Take 0 6= v ∈ kerB ∩ W , assume without loss of
generality that v =

∑k+1
i=1 aivi, then by Lemma 7.27.2,

σ1(A−B) ≥ |(A−B)v|Rm

|v|Rn

=
|Av|Rm

|v|Rn

=

√∑k+1
i=1 σ

2
i a

2
i√∑k+1

i=1 a
2
i

≥ σk+1(A).
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Now we prove the general case: By (1), we have

σℓ(A−B) = σ1 ((A−B)− (A−B)ℓ−1)

= σ1 (A− (B + (A−B)ℓ−1))

Since rankB ≤ k, rank(A−B)ℓ−1 ≤ ℓ− 1, we have

rank(B + (A−B)ℓ−1) ≤ k + ℓ− 1,

By the previous case,
σ1 (A− (B + (A−B)ℓ−1)) ≥ σk+ℓ(A).

Now we give the proof of Theorem 7.27.2:

Proof.

‖A−B‖2F =

n∑
i=1

σ2
i (A−B)

≥
n∑

i=1

σ2
i+k(A)

=

n∑
i=1

σ2(A−Ak)
2

= ‖A−Ak‖F .

7.2 Application: Low-dimensional Fitting (PCA)
Problem 7.1. Given m experiments, where each experiment yields an n-dimensional datum,
assume m� n, then we obtain the following matrix:

A =


αT
1

αT
2
...
αT
m

 .

How can we determine if α1, . . . , αm lie near some lower-dimensional linear subspace?

Proposition 7.1. Given the singular value decomposition of a matrix A ∈ Mm×n(R) with
m > n:

A =

n∑
i=1

σiwiv
T
i .

Let Wk = spanR{v1, . . . , vk}. Then Wk minimizes the following value:
m∑
i=1

(dist(αi,W ))2,

where W is a k-dimensional subspace of Rn.
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Proof. For any k-dimensional subspace W , take an orthonormal basis {u1, . . . , uk} of W . Then

(dist(αi,W ))2 = ‖αi − ProjWαi‖2

= ‖αi −
k∑

j=1

〈αi, uj〉uj‖2

= ‖αT
i − ((αi, u1), . . . , (αi, uk))

u
T
1
...
uTk

 ‖22.

Thus,
m∑
i=1

(dist(αi,W ))2 = ‖A−

 〈α1, u1〉 . . . 〈α1, uk〉
...

...
〈αm, u1〉 . . . 〈αm, uk〉


u

T
1
...
uTk

 ‖2F .

On the other hand, since α =
∑n

i=1〈α, vi〉vi, we can write

αT = (〈α, v1〉, . . . , 〈α, vn〉)P,

where P = (v1, . . . , vn). Thus
A = QDPT ,

where the i-th row of QD is (〈αi, v1〉, . . . , 〈αi, vn〉). Therefore

QD



vT1
...
vTk
0
...
0


= Ak.

According to Theorem 7.27.2, Wk achieves the minimum of
∑m

i=1(dist(αi,W ))2.

Proposition 7.2. Let µ = 1
m

∑m
i=1(α

T
i ), and µ = (1, . . . , 1)T · µ. Perform singular value

decomposition on B = A− µ to obtain B = QDPT , where P = (v1, . . . , vn). Then

µ+ spanR(v1, . . . , vk)

is the k-dimensional affine plane that minimizes the sum of squared distances to α1, . . . , αm.

7.3 Application: Least Squares Method
To predict y from n-dimensional data (a1, . . . , an),

y = x1a1 + · · ·+ xnan.

After multiple experiments, we obtain a system of equations
αT
1

αT
2
...
αT
m


x1...
xn

 =

 b1
...
bm

 .
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When m � n, this system of equations most likely has no solution. How do we find the closest
solution? That is, minimizing the sum of squared errors between the model predicted values and
the m experiment results:

m∑
i=1

(αT
i · x− b)2

Let W be the column space of A. Then the distance between b and W is

|b− ProjW b|.

Since Ax ranges over W , there exists x such that Ax = ProjW b. However, such x is not unique;
they differ by elements in kerA. Usually, we require minimizing the length of x to give a unique
solution, which is called the optimal least squares solution.

Next, we introduce how to use singular value decomposition to provide the least squares
solution. Given a matrix A ∈Mm×n(R) and its singular value decomposition

A = QDPT ,

where

D =



σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · σr · · · 0
0 0 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · 0 · · · 0


Let

A† = PD†QT ,

where

D†



σ−1
1 0 · · · 0 · · · 0
0 σ−1

2 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · σ−1

r · · · 0
0 0 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · 0 · · · 0


Then we have the following theorem:

Theorem 7.3. For Ax = b, x̂ = A†b is the optimal least squares solution.

Proof. First we prove that Ax̂− b ⊥ imA. That is, we verify

AT (A(A†b)− b) = 0.

By direct calculation,

PDTQT (QDPTPD†QT − Im)b = (PDTDD†QT − PDTQT )b

= (PDTQT − PDTQT )b

= 0.
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Next, we verify that kerA ⊥ A†b. Since kerA = ker(QDPT ) = kerD, and A†b = PD†QT b,
we need to verify

D†QT b ⊥ kerD,

which is evident from the expressions of D and D†.

Remark 7.2. If one wants to use

y = x1a1 + · · ·+ xnan + c

to fit the data, consider 
αT
1 , 1
αT
2 , 1
...

αT
m, 1



x1
x2
...
xn
c

 =


b1
b2
...
bm


Let

Ã =


αT
1 , 1
αT
2 , 1
...

αT
m, 1

 ,

and consider Ã†.

8 Excercises
8.1 Useful Exercises
Excercise 8.1. Prove that any skew-symmetric matrix A ∈Mn(R) can be orthogonally similar
to a block diagonal matrix with blocks of the form(

0 −λ
λ 0

)
and possibly a 0 block if n is odd. Use this to show that any skew-symmetric matrix over R is
congruent to a block diagonal matrix with blocks of the form(

0 −1
1 0

)
and possibly some 0 block.

Excercise 8.2. Let V be the linear space consisting of all skew-symmetric real matrices of order
n.

1. For any A ∈ V , prove that I +A is invertible.

2. For any A ∈ V , define f(A) = (I −A)(I +A)−1. Prove that f(A) is an orthogonal matrix.

3. Give a characterization of the image of f : V → O(n) in terms of eigenvalues, that is, which
matrices can be written in the form (I −A)(I +A)−1 for some A ∈ V .
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Excercise 8.3. Let A be 2× 2 real symmetric matrix

A =

(
a b
b c

)
.

Write down an orthogonal matrix Q which diagonalizes A in terms of a, b, c.

Excercise 8.4. Consider the groups O(2), its subgroup SO(2) and group SO(3). Determine
whether the following statements are correct. If correct, prove it; if incorrect, provide a coun-
terexample:

1. Two elements in the group O(2) are conjugate if and only if they have the same trace.

2. Two elements in the group SO(2) are conjugate in the group SO(2) if and only if they have
the same trace.

3. Two elements in the group SO(2) are conjugate in the group O(2) if and only if they have
the same trace.

4. Two elements in the group SO(3) are conjugate if and only if they have the same trace.

Excercise 8.5 (Cartan–Dieudonné theorem). Prove that any orthogonal transformation of Eu-
clidean space (V, 〈·, ·〉) can be expressed as a composition of at most dimV reflections.

(The nontrivial part of the original theorem is to show this also holds for any non-degenerate
symmetric bilinear form over a field of characteristic not equal to 2.)

Excercise 8.6 (Courant–Fischer–Weyl Min-Max Principle). You may choose to prove either
part (1) or part (2).

1. Let (E, 〈·, ·〉) be an n-dimensional real inner product space. Suppose T is a self-adjoint
transformation on E with real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Prove that the eigenvalues
of T can be characterized by the following min-max method:

λk = min {max {〈T (x), x〉 : x ⊥Wk, |x| = 1} :Wk ⊂ E is a subspace, dimWk = k − 1}

Here, for a fixed (k − 1)-dimensional subspace Wk, we first compute the maximum value

max {〈T (x), x〉 : x ⊥Wk, |x| = 1} .

Then we vary Wk over all (k − 1)-dimensional subspaces and take the minimum of these
maximum values.

2. Alternatively, you may prove the following special case: Let A be an n× n real symmetric
matrix and v be an arbitrary n-dimensional real column vector, where |v| denotes the vector
length under the standard inner product. Let λ1, λ2, · · · , λn be all eigenvalues of A. Prove
that:

|Av| ≤ max{|λ1|, |λ2|, · · · , |λn|}|v|.

8.2 Optional problems
You do not need to hand in these problems, but you are encouraged to discuss and try them.
Excercise 8.7 (Outer automorphisms of SO(n,R)). An automorphism of a group G is called
an inner automorphism if it is of the form g 7→ hgh−1 for some fixed h ∈ G. An automorphism
which is not inner is called an outer automorphism. Consider the automorphism of SO(n,R)
defined by A 7→ PAP−1 where P ∈ O(n,R) with detP = −1. Is this an inner automorphism or
an outer automorphism? Prove your answer. (The answer may depend on n.)

28



Excercise 8.8 (Challenge Problem). You will obtain a standard form for Lorentz transforma-
tions on R4. Let ei (i = 1, . . . 4) be the standard basis for R4. Consider the symmetric bilinear
on R4 defined by

〈x, y〉 = x1y1 + x2y2 + x3y3 − x4y4.

A basis fi (i = 1, . . . 4) of R4 is called orthonormal if

〈f1, f1〉 = 〈f2, f2〉 = 〈f3, f3〉 = 1, 〈f4, f4〉 = −1, 〈fi, fj〉 = 0 if i 6= j.

Suppose T is a Lorentz transformation on R4, that is, T is a linear transformation such that

〈Tx, Ty〉 = 〈x, y〉

for all x, y ∈ R4. Prove that there exists an orthonormal basis of R4 such that the matrix of T
is block diagonal with blocks of the following types:

1. A block of order 1 with entry ±1.

2. A block of order 2 of the form (
cos θ − sin θ
sin θ cos θ

)
.

3. a block of order 2 of the form

±
(

cosh θ sinh θ
sinh θ cosh θ

)
or ±

(
cosh θ sinh θ
− sinh θ − cosh θ

)
.

4. A block A of order 3 with eigenvalue λ = ±1 so that (A− λI)3 = 0 but (A− λI)2 6= 0.

Excercise 8.9. If the Lorentz transformation T in Problem 8.88.8 is replaced by a transformation
satisfying

〈Tx, y〉 = −〈x, Ty〉

can you obtain a similar result? State the result and prove it.

Excercise 8.10 (Cauchy Interlacing Theorem). Let A be an n × n real symmetric matrix,
and let B be an m × m principal submatrix of A, where m < n. If the eigenvalues of A are
λ1 ⩾ λ2 ⩾ · · · ⩾ λn, and the eigenvalues of B are µ1 ⩾ µ2 ⩾ · · · ⩾ µm, then for all 1 ⩽ i ⩽ m,
we have

λi ⩾ µi ⩾ λi+n−m.

(Hint: Use the Courant-Fischer-Weyl min-max principle from Problem 8.68.6.)

Excercise 8.11 (Sylvester’s Criterion). Use the Cauchy interlacing theorem to prove Sylvester’s
criterion: A symmetric matrix is positive definite if and only if all its leading principal minors
are positive.

9 Hermitian Forms and Unitary Matrices
Definition 9.1. Let V be a finite-dimensional vector space over C. A map h : V × V → C is
called a Hermitian form , if it satisfies:

(1) h(λ1x1 + λ2x2,y) = λ1h(x1,y) + λ2h(x2,y);
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(2) h(x,y) = h(y,x).

Remark 9.1. Condition (2) guarantees that h(x,x) is real for all x.

Example 9.1. The map
h : Cn × Cn → C

(x,y) 7→
n∑

i=1

xiyi

is called the standard Hermitian form on Cn.

Problem 9.1. Similar to symmetric bilinear forms and quadratic forms on real vector spaces,
how can we recover h from h(x, x)?

Lemma 9.1. For a Hermitian form h : V × V → C, we have

Reh(x,y) =
1

2
(h(x+ y,x+ y)− h(x,x)− h(y,y))

Imh(x,y) =
1

2
(h(

√
−1x+ y,

√
−1x+ y)− h(x,x)− h(y,y)).

Moreover, Reh is symmetric, and Imh is skew-symmetric (alternating).

Given a Hermitian form h : V ×V → C, and a basis α1, · · · , αn, the Gram matrix (h(αi, αj)) =

H satisfies H = H
T . Such a matrix H is called a Hermitian matrix. For convenience, we denote

H∗ = H
T hereafter. For a Hermitian matrix H, it is also true that ReH is symmetric and ImH

is skew-symmetric.

Definition 9.2. For A,B ∈ Mn(C), if there exists P ∈ GLn(C) such that PAP ∗ = B, then A
and B are said to be congruent (or Hermitian congruent).

Now given a Hermitian form h : V × V → C, and two bases (α1, · · · , αn), (β1, · · · , βn) satis-
fying {β1, · · · , βn} = (α1, · · · , αn)P , then

(h(βi, βj))
∗ =

β1...
βn

 ·

α1

...
αn


= P

T

α1

...
αn

 · (α1, · · · , αn)P

= P
T (
h(αi, αj)

)
P

So the Gram matrices of the same Hermitian form under different bases are congruent.

Theorem 9.1. Any Hermitian matrix is congruent to a diagonal matrix, and the diagonal entries
must be real numbers.

Definition 9.3. A Hermitian form h on a vector space V over C is called:

• Positive definite (h > 0), if h(v, v) > 0 for all v 6= 0;

• Positive semi-definite (h ≥ 0), if h(v, v) ≥ 0 for all v;
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• Negative definite (h < 0), if h(v, v) < 0 for all v 6= 0;

• Negative semi-definite (h ≤ 0), if h(v, v) ≤ 0 for all v.

Theorem 9.2. For a Hermitian matrix H, the following are equivalent:

(1) H is positive definite;

(2) H is congruent to the identity matrix;

(3) H = PP ∗, where P ∈ GLn(C);

(4) All leading principal minors of H are positive;

(5) All principal minors of H are positive.

Theorem 9.3. For a Hermitian matrix H, the following are equivalent:

(1) H is positive semi-definite;

(2) H is congruent to (
Ir O
O O

)
;

(3) H = PP ∗, where P ∈Mn(C);

(4) All principal minors of H are nonnegative.

Definition 9.4. Given a finite-dimensional C-vector space V and a Hermitian form h : V ×V →
C, if h > 0, then (V, h) is called a Hermitian inner product space, or a unitary space .

For convenience, we denote 〈x, y〉 := h(x, y).

(1) Length (Norm): For x ∈ V , |x| :=
√
〈x, x〉.

(2) Angle: For x, y ∈ V \{0}, there exists θ(x, y) ∈ [0, π2 ] such that

cos(θ(x, y)) =
|〈x, y〉|
|x||y|

.

Lemma 9.2 (Cauchy-Schwarz Inequality).

|〈x, y〉| ≤ |〈x, x〉||〈y, y〉|.

Proof. Let 〈x, y〉 = re
√
−1θ. Consider |te

√
−1θx+ y|2, where t ∈ R. Then

t2|x|2 + 2rt+ |y|2 ≥ 0, ∀t ∈ R,

Thus the discriminant is ≤ 0, and equality holds if and only if x, y are linearly dependent over
C.

Lemma 9.3 (Triangle Inequality). ∀x, y ∈ V , |x+ y| ≤ |x|+ |y|.
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Proof. By definition,
|x+ y|2 = |x|2 + 〈x, y〉+ 〈y, x〉+ |y|2.

By Cauchy-Schwarz inequality,

|〈x, y〉| ≤ |x||y|, |〈y, x〉| ≤ |x||y|,

Thus
|x+ y|2 ≤ |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2.

Lemma 9.4 (Parallelogram Identity). ∀x, y ∈ V , we have

|x+ y|2 + |x− y|2 = 2(|x|2 + |y|2).

Definition 9.5. Given a unitary space (V, h), a basis {α1, . . . , αn} is called an orthonormal
basis if 〈αi, αj〉 = δij.

Remark 9.2. Similar to the inner product space case, starting from any basis, one can obtain
an orthonormal basis via the Gram-Schmidt process.

Theorem 9.4. Given a unitary space (V, h) and two orthonormal bases {α1, . . . , αn} and
{β1, . . . , βn}. Assume (α1, . . . , αn) = (β1, . . . , βn)P , then

PP ∗ = In .

Definition 9.6. A matrix P ∈Mn(C) is called a unitary matrix if PP ∗ = In.

Lemma 9.5. If P ∈Mn(C) is a unitary matrix, then P , P−1, P ∗ are all unitary matrices.

Definition 9.7. Two complex matrices A,B ∈Mn(C) are called unitarily similar if there exists
a unitary matrix U ∈Mn(C) such that A = U∗BU .

Proposition 9.1. Any complex square matrix is unitarily similar to an upper triangular matrix.

Proof. By induction. Let A ∈Mn(C), induct on n.
Let λ be an eigenvalue of A, v ∈ Cn be a λ-eigenvector. Assume without loss of generality

‖v‖ = 1. Extend v to an orthonormal basis of Cn, say v1, · · · , vn. Let U = (v1 · · · vn) be a
unitary matrix. Then

AU = (Av1 · · ·Avn) = (v1 · · · vn)
(
λ ∗
0 ∗

)
That is U∗AU =

(
λ ∗
0 ∗

)
.

The result follows by induction.

Definition 9.8. A square matrix N ∈Mn(C) is called normal if NN∗ = N∗N .

Lemma 9.6. If a normal matrix N is unitarily similar to
(
N1 N2

0 N3

)
, where N1, N3 are square

matrices, then it must be that N2 = 0, and both N1 and N3 are normal.
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Proof. Suppose
(
N1 N2

0 N3

)
= U∗NU for a unitary matrix U . Then U∗NU commutes with

(U∗NU)∗ = U∗N∗U , implying U∗NU is normal. Thus(
N1 N2

0 N3

)(
N∗

1 0
N∗

2 N∗
3

)
=

(
N∗

1 0
N∗

2 N∗
3

)(
N1 N2

0 N3

)
Comparing top-left blocks, N1N

∗
1 +N2N

∗
2 = N∗

1N1 ⇒ tr(N2N
∗
2 ) = 0 ⇒ N2 = 0.

Theorem 9.5 (Spectral Theorem for Normal Matrices). A normal matrix is unitarily similar
to a diagonal matrix.

Proof. Let A ∈Mn(C) be normal. Then A is unitarily similar to an upper triangular matrix∗ · · · ∗
... . . . ...
0 · · · ∗


By Lemma 9.69.6, it must be a diagonal matrix.

Example 9.2. Real symmetric, real skew-symmetric, orthogonal, Hermitian, unitary, and skew-
Hermitian matrices are all normal matrices.

Corollary 9.1.

1. Any Hermitian matrix (including real symmetric matrices) is unitarily similar to diag(λ1, · · · , λn),
where λi are real numbers.

2. Any unitary matrix (including orthogonal matrices) is unitarily similar to diag(λ1, · · · , λn),
where λi = e

√
−1θi , θi ∈ R.

3. Any skew-Hermitian matrix (including skew-symmetric matrices) is unitarily similar to
diag(λ1, · · · , λn), where λi =

√
−1gi, gi ∈ R.

Proof.

1. Suppose a Hermitian matrix is unitarily similar to diag(λ1, · · · , λn). Since the diagonal
matrix is also Hermitian ⇒ λi are real.

2. Suppose a unitary matrix is unitarily similar to a diagonal matrix diag(λ1, · · · , λn). Simi-
larity preserves unitarity ⇒ the modulus of each λi is 1.

3. Similar argument.

Definition 9.9. Let (V, 〈·, ·〉) be an n-dimensional unitary space (i.e., the Gram matrix of
〈·, ·〉 is a positive definite Hermitian matrix). A linear transformation φ : V → V is called a
normal transformation, Hermitian transformation, unitary transformation, or skew-
Hermitian transformation, if the matrix representation of φ under an orthonormal basis of
V is a matrix of the corresponding type.

Restating the Spectral Theorem from the viewpoint of linear transformations:
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Lemma 9.7. Let φ be a normal transformation on a unitary space V . If W is an invariant
subspace of φ, then the orthogonal complement W⊥ is also an invariant subspace.

Theorem 9.6 (Spectral Theorem, Transformation Form). Let V be an n-dimensional unitary
space, and φ : V → V be a normal transformation. Then there exists an orthonormal basis
v1, . . . , vn of V such that each vi is an eigenvector of φ. Let λ1, . . . , λk be the distinct eigenvalues
of φ, and let Wi be the eigenspace of φ corresponding to λi. Then

φ = λ1π1 + · · ·+ λkπk,

where πi : V → Wi is the orthogonal projection. This is called the spectral decomposition of
φ.

Theorem 9.7. Given an n-dimensional unitary space V and a linear transformation φ : V → V ,
there exists a unique linear transformation φ∗ : V → V such that for any α, β ∈ V ,

〈φ∗(α), β〉 = 〈α, φ(β)〉.

We call φ∗ the adjoint of φ. Let A and B be the matrices of φ and φ∗ under an orthonormal
basis of V , respectively, then B = A∗ = A

T .

Proof. Assume 〈φ∗(α), β〉 = 〈α, φ(β)〉, ∀α, β. Take an orthonormal basis v1, . . . , vn. Then:φ
∗(v1)

...
φ∗(vn)

 = B

v1...
vn

 , (φ(v1), · · · , φ(vn)) = (v1, · · · , vn)A

The matrix of inner products on the left is BT

v1...
vn

 · (v1, · · · , vn) = BT , and the matrix of

inner products on the right is

v1...
vn

 · (v1, · · · , vn)A = A. Thus BT = A⇒ B = A∗.

Conversely, to construct φ∗, one only needs to pick an orthonormal basis. Let A be the
matrix of φ, then we use A∗ to obtain φ∗.

Theorem 9.8. Let V1, V2 be n-dimensional unitary spaces, and γ : V1 → V2 be a linear map.
The following are equivalent:

1. γ preserves the inner product;

2. γ preserves the length of vectors (isometry);

3. γ : V1 → V2 is a linear isomorphism and preserves the inner product;

4. γ maps any orthonormal basis of V1 to an orthonormal basis of V2;

5. γ maps some orthonormal basis to an orthonormal basis;

6. The matrix representation of γ with respect to orthonormal bases of V1 and V2 is a unitary
matrix.
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Example 9.3. When n = 1, a unitary matrix is just a complex number with modulus 1, i.e.,
e
√
−1θ for some θ ∈ R. Thus, a unitary transformation on a 1-dimensional unitary space is just a

rotation by angle θ. Or in other words, the group of unitary transformations on a 1-dimensional
unitary space is isomorphic to the real special orthogonal group SO(2).

When n = 2, we will discuss in detail the group SU(2) ={A ∈M2(C) : AA∗ = I2, detA = 1}
in the next lecture.

10 Application of spectral theorem: conics and quadrics
Definition 10.1. A conic in R2 is the locus of points (x, y) satisfying a quadratic equation

Ax21 +Bx1x2 + Cx22 +Dx1 + Ex2 + F = 0,

where A,B,C,D,E, F ∈ R and not all of A,B,C are zero.

The conic is called nondegenerate if it is not two lines, one line, a point, or empty set. If we
allow rigid motion transformations of R2, x 7→ Px+ b where P ∈ O(2,R) and b ∈ R2, then we
can simplify the equation of a conic. Using the results on symmetric bilinear forms and quadratic
forms, we can show the classification theorem for conics:

Theorem 10.1. Any conic with nondegenerate quadratic part can be transformed by rigid motion
into one of the following standard forms:

1. Ellipse: x2
1

a2 +
x2
2

b2 = 1, where a, b > 0;

2. Hyperbola: x2
1

a2 − x2
2

b2 = 1, where a, b > 0;

3. Parabola: x21 = 2px2, where p 6= 0.

Proof. The quadratic part Ax21+Bx1x2+Cx22 defines a symmetric bilinear form on R2 by Gram
matrix (

A B/2
B/2 C

)
.

Then there exists an orthogonal matrix P ∈ O(2,R) such that

PT

(
A B/2
B/2 C

)
P =

(
λ1 0
0 λ2

)
,

where λ1, λ2 are the eigenvalues of the above matrix. Thus, under the change of variables x = Py,
the conic equation becomes

λ1y
2
1 + λ2y

2
2 +D′y1 + E′y2 + F = 0,

for some D′, E′ ∈ R. Now we consider the following cases:

1. If λ1, λ2 have the same sign, then we can complete the square to obtain the standard form
of an ellipse.

2. If λ1, λ2 have opposite signs, then we can complete the square to obtain the standard form
of a hyperbola.
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3. If one of λ1, λ2 is zero, then we can complete the square to obtain the standard form of a
parabola.

Definition 10.2. A quadric in Rn is the locus of points x = (x1, x2, · · · , xn) satisfying a
quadratic equation

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

bixi + c = 0,

where aij , bi, c ∈ R and not all of aij are zero.

We call a quadric nondegenerate if it is not a union of hyperplanes, or a cone over lower
dimensional quadric, or empty set. Similar to the conic case, using the results on symmetric
bilinear forms and quadratic forms, we can show the classification theorem for three-dimensional
quadrics:

Theorem 10.2. Any quadric in R3 with nondegenerate quadratic part can be transformed by
rigid motion into one of the following standard forms:

1. Ellipsoid: x2
1

a2 +
x2
2

b2 +
x2
3

c2 = 1, where a, b, c > 0;

2. Hyperboloid of one sheet: x2
1

a2 +
x2
2

b2 − x2
3

c2 = 1, where a, b, c > 0;

3. Hyperboloid of two sheets: −x2
1

a2 − x2
2

b2 +
x2
3

c2 = 1, where a, b, c > 0;

4. Elliptic paraboloid: x2
1

a2 +
x2
2

b2 = 2px3, where a, b, p > 0;

5. Hyperbolic paraboloid: x2
1

a2 − x2
2

b2 = 2px3, where a, b, p > 0.

11 Skew-symmetric Bilinear Forms and Symplectic Matri-
ces

The classification of skew-symmetric bilinear forms on finite-dimensional vector spaces is similar
to that of symmetric bilinear forms. We use one unified approach to summarize the idea of the
proofs here.

Definition 11.1 (Nondegenerate Forms). If B : V × V → F is a bilinear (or Hermitian) form
on a finite-dimensional vector space V over a field F , then B is called nondegenerate if for any
nonzero v ∈ V , there exists some u ∈ V such that B(v, u) 6= 0 (or equivalently, B(u, v) 6= 0). Or
equivalently, the Gram matrix of B under any basis of V is invertible.

We will always assume B is symmetric or skew-symmetric bilinear form on V over a field
F with char(F ) 6= 2, or Hermitian form on V over C. Then the next definition of orthogonal
complement has no ambiguity. Let W be a subspace of V . The orthogonal complement of W
with respect to B is defined as

W⊥ = {v ∈ V : B(v, w) = 0, ∀w ∈W}.

The definition of radical V ⊥ is also similar.
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Definition 11.2 (Radical). The radical of B is defined as

Rad(B) = {v ∈ V : B(v, u) = 0, ∀u ∈ V } = V ⊥.

Then have an orthogonal decomposition theorem.

Proposition 11.1. The vector space is decomposed into the orthogonal direct sum

V = Rad(B)⊕W,

where W is a subspace of V such that the restriction of B on W is nondegenerate.

The next step is to classify nondegenerate forms and we have the following important theorem
generalizing the theorem in Excercise 4.34.3.

Theorem 11.1. Let B be a nondegenerate symmetric, or skew-symmetric (or Hermitian) form
on a finite-dimensional vector space V over a field F (or over C). Fix a subspace W of V . Then
the following are equivalent:

(1) The restriction of B on W is nondegenerate;

(2) V =W ⊕W⊥;

(3) The restriction of B on W⊥ is nondegenerate.

The proof is similar to that of Excercise 4.34.3.
Then we can classify skew-symmetric bilinear forms as follows.

Theorem 11.2. Let B be a skew-symmetric bilinear form on a finite-dimensional vector space
V over a field F whose characteristic is not 2. Then there exists a basis of V such that the Gram
matrix of B under this basis is Or Ir O

−Ir Or O
O O O

 ,

where 2r = rank(B). Or equivalently, there exists a basis {α1, · · · , αr, β1, · · · , βr, γ1, · · · , γn−2r}
of V such that

B(αi, βj) = δij , B(βi, αj) = −δij , B(αi, αj) = B(βi, βj) = B(γi, ·) = 0.

Proof. We reduce to nondegenerate case by the orthogonal decomposition by the radical. Then
we prove by induction on the dimension of V . The base case dimV = 0 is trivial. For dimV > 0,
we can find u, v ∈ V such that B(u, v) 6= 0. Rescale u such that B(u, v) = 1. Let W =
span{u, v}. Then the restriction of B on W is nondegenerate. By the previous theorem, we have
the orthogonal decomposition V = W ⊕W⊥. By induction hypothesis, we can find a basis of
W⊥ such that the Gram matrix of the restriction of B on W⊥ has the desired form. Combining
with {u, v} gives the desired basis of V .

Corollary 11.1. The rank of any skew-symmetric matrix is even.

Corollary 11.2. Any two nondegenerate skew-symmetric bilinear forms on a 2n-dimensional
vector space over a field F are equivalent.

Definition 11.3 (Symplectic basis). A basis {α1, · · · , αn, β1, · · · , βn} of a 2n-dimensional vector
space V over a field F with a nondegenerate skew-symmetric bilinear form B is called a symplectic
basis if

B(αi, βj) = δij , B(βi, αj) = −δij , B(αi, αj) = B(βi, βj) = 0.
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Definition 11.4 (Symplectic Matrix). A matrix A ∈M2n(F ) is called a symplectic matrix if it
satisfies

ATJA = J,

where
J =

(
On In
−In On

)
.

Proposition 11.2. The set of all symplectic matrices in M2n(F ) forms a group under matrix
multiplication, denoted by Sp(2n, F ).

One nontrivial fact about symplectic matrices is that their determinants are always 1.

Theorem 11.3. If A ∈ Sp(2n, F ), then det(A) = 1.

Proof. Taking determinants on both sides of the equation ATJA = J , we have

(detA)2 det J = det J.

Since det J = 1, we have (detA)2 = 1. Thus detA = ±1. To show detA = 1, we consider the
symplectic form on ∧2nF 2n induced by J . Then we have

(detA)ω = ω,

where ω is a nonzero element in ∧2nF 2n. Thus detA = 1.

Another nontrivial factor about symplectic matrices is that they are closed under taking
transpose.

Theorem 11.4. If A ∈ Sp(2n, F ), then AT ∈ Sp(2n, F ).

Proof. Taking transpose on both sides of the equation ATJA = J , we have

ATJTA = JT .

Since JT = −J , we have
ATJA = −J.

Multiplying both sides by −1, we have

ATJA = J.

Thus AT ∈ Sp(2n, F ).

12 Excercises
12.1 Useful Exercises
Excercise 12.1. Suppose A is an invertible real square matrix with singular values σ1, · · · , σn.
Find the singular values of A−1.

Excercise 12.2 (Polar Decomposition). In this problem, you will prove the polar decomposition
of an invertible complex matrix using the singular value decomposition.

1. Try to state without proof the singular value decomposition theorem for complex matrices
similar to the one stated in the class for real matrices.
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2. Use it to prove the following: Let A be an n × n invertible complex matrix. Prove that
there exist unitary matrices U ∈ U(n) and P is a positive definite hermitian matrix such
that A = UP . This is called the polar decomposition of A.

3. Show that the polar decomposition is unique. (This shows that GL(n,C) is homeomorphic
to U(n)×H+

n where H+
n is the set of all positive definite hermitian matrices, a convex cone

in the vector space of all hermitian matrices.)

Excercise 12.3. Artin Chapter 8, Excercise 6.20
Prove the circulant, the matrix below, is normal.

C =


c0 c1 c2 · · · cn
cn c0 c1 · · · cn−1

cn−1 cn c0 · · · cn−2

...
...

... . . . ...
c1 c2 c3 · · · c0


(How to diagonalize it? Hint: write C as a polynomial in the shift matrix. see Artin Chapter

8, Excercise 6.19)

Excercise 12.4. Prove that for any square submatrix of a unitary matrix, the modulus of any
of its complex eigenvalues does not exceed 1.

Excercise 12.5. 1. If A and B are normal matrices, is AB necessarily normal? What if we
additionally assume AB = BA?

2. Determine if the matrix A =

( √
−1 −

√
−1

−
√
−1

√
−1

)
is normal, Hermitian, or unitary.

Excercise 12.6 (Characterization of Normal Matrices in terms of Singular Values). Let A be
an n × n complex matrix. Let σi(A) denote the i-th singular value of A (such that σ1(A) ≥
· · · ≥ σn(A) ≥ 0), and let λ1, · · · , λn be the complex eigenvalues of A (counted with algebraic
multiplicity). Prove that

n∑
i=1

σi(A)
2 ≥

n∑
i=1

|λi|2, with equality if and only if A is a normal matrix.

(Hint: Recall that any complex matrix can be conjugate to upper triangular matrix by an
invertible matrix, by choosing eigenvectors and induction. Prove that actually a unitary matrix
can do this job, then compare the Frobenius norms of both sides.)

Excercise 12.7. Lang Algebra Chapter XV, 1.
Here we choose σ to be complex conjugation.

1. Let E be a finite dimensional space over the complex numbers, and let

h : E × E → C

be a hermitian form. Write

h(x, y) = g(x, y) + if(x, y)

where g, f are real valued. Show that g, f are R-bilinear, g is symmetric, f is alternating.
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2. Let E be finite dimensional over C. Let g : E ×E → C be R-bilinear. Assume that for all
x ∈ E, the map y 7→ g(x, y) is C-linear, and that the R-bilinear form

f(x, y) = g(x, y)− g(y, x)

is real-valued on E ×E. Show that there exists a hermitian form h on E and a symmetric
C-bilinear form ψ on E such that 2ig = h+ψ. Show that h and ψ are uniquely determined.

Excercise 12.8. Let X = A+
√
−1B be a complex square matrix, where A,B ∈Mn(R). Prove

that X is a unitary matrix if and only if (
A −B
B A

)
is an orthogonal matrix.

12.2 Optional problems
Excercise 12.9. Prove the additive inequality of singular values. Let A,B be two m × n real
matrices. Prove that

σk+l−1(A+B) ≤ σk(A) + σl(B)

for k + l − 1 ≤ min(m,n).

Excercise 12.10. Let (V, ω) be a symplectic space if ω is a non-degenerate skew-symmetric form
on the F -vector space V . An F -linear transformation T is called a symplectic transformation
if ω(T (v), T (w)) = ω(v, w). A basis (α1, · · · , αn, β1, · · · , βn) is called a symplectic basis if
ω(αi, βj) = δij and ω(αi, αj) = ω(βi, βj) = 0. When F = C, prove that for any symplectic
transformation T of a symplectic space, there exists a symplectic basis such that the matrix of T
under this basis has the form [

Bn 0n
0n BT

n

]
where Bn is an n-dimensional Jordan normal form.

Excercise 12.11. Prove the following inequality between singular values and eigenvalues. Let
A be an n × n complex matrix with eigenvalues λ1, · · · , λn (counted with algebraic multiplicity)
and singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Then for any k = 1, · · · , n,

|λ1λ2 · · ·λk| ≤ σ1σ2 · · ·σk.

Excercise 12.12 (Challenge Problem). Let A be a real square matrix of order n, and let the
eigenvalues of ATA be λ21, · · · , λ2n, where 0 ≤ λi ≤ 1 for i = 1, 2, · · · , n. Prove that:

det(In −A) ≥ (1− λ1) (1− λ2) · · · (1− λn)

13 Orthogonal representation of SU(2)

We will use the spectral theorem for unitary matrices to study the special unitary group of degree
2 over C:

SU(2) = {A ∈M2(C) : AA∗ = I2, detA = 1}.

Then we can study the topology of SU(2) via its explicit form.
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Proposition 13.1. Any matrix A ∈ SU(2) can be written as

A =

(
α −β
β α

)
,

where α, β ∈ C satisfy |α|2 + |β|2 = 1.

Proof. First it is straightforward to verify that any matrix of the above form is in SU(2). Con-

versely, let A =

(
a b
c d

)
∈ SU(2). Then the conditions AA∗ = I2 and detA = 1 imply that

A−1 = A∗. Thus (
d −b
−c a

)
=

(
a c

b d

)
.

Comparing the entries gives us the desired form.

So the topology of SU(2) is the same as that of the unit sphere S3 in R4.
The conjugacy classes of SU(2) can be described as follows:

Proposition 13.2. The conjugacy classes of SU(2) are determined by the trace. More precisely,
two matrices A,B ∈ SU(2) are conjugate if and only if tr(A) = tr(B).

Proof. First the eigenvalues of any matrix A ∈ SU(2) are of the form e
√
−1θ, e−

√
−1θ for some

θ ∈ R. Thus the trace of A is 2 cos θ. If two matrices A,B ∈ SU(2) have the same trace, then
they have the same eigenvalues. By the spectral theorem for unitary matrices, they are conjugate
by a matrix P ∈ U(2). And we can alway rescale P such that detP = 1, so that P ∈ SU(2). If
two matrices A,B ∈ SU(2) are conjugate, then they have the same eigenvalues, so they have the
same trace.

The trace zero matrices in SU(2) are of the form(
x
√
−1 y +

√
−1z

−y +
√
−1z −x

√
−1

)
, and x2 + y2 + z2 = 1.

Next we will show that there is a natural homomorphism from SU(2) to the special orthogonal
group SO(3,R). Consider the Lie algebra of SU(2): Let

su(2) = {X ∈M2(C) : X∗ = −X, tr(X) = 0}.

Then su(2) is a 3-dimensional real vector space with basis

√
−1σ1 =

(
0

√
−1√

−1 0

)
,

√
−1σ2 =

(
0 1
−1 0

)
,

√
−1σ3 =

(√
−1 0
0 −

√
−1

)
,

where σ1, σ2, σ3 are the Pauli matrices. Define an inner product on su(2) by

〈X,Y 〉 = −1

2
tr(XY ).

Then {iσ1, iσ2, iσ3} is an orthonormal basis of su(2) with respect to this inner product.

Proposition 13.3. For any A ∈ SU(2), the map φA : su(2) → su(2) defined by

φA(X) = AXA−1

is an orthogonal transformation on the inner product space su(2).
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Proof. First we need to verify that φA(X) ∈ su(2) for any X ∈ su(2). Indeed,

(AXA−1)∗ = (A−1)∗X∗A∗ = −AXA−1,

and
tr(AXA−1) = tr(X) = 0.

Next we verify that φA preserves the inner product. Indeed,

〈φA(X), φA(Y )〉 = −1

2
tr(AXA−1AY A−1)

= −1

2
tr(XY )

= 〈X,Y 〉.

The main theorem we want to show is the following:

Theorem 13.1. The map Φ : SU(2) → SO(3,R) induced by

Φ(A)“ =′′ φA

is a surjective group homomorphism with kernel {± I2}.

It is easier to use quaternions to prove this theorem. We introduce the the following matrices:

1 =

(
1 0
0 1

)
, i =

(
0 1
−1 0

)
, j =

(
0

√
−1√

−1 0

)
, k =

(√
−1 0
0 −

√
−1

)
.

Then any matrix in su(2) can be written as

X = xi+ yj+ zk,

for some x, y, z ∈ R. Thus we can identify su(2) with R3 via the map

(x, y, z) 7→ xi+ yj+ zk.

Under this identification, the inner product on su(2) corresponds to the standard inner product
on R3. The multiplication rules of i, j,k are

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j,

The group SU(2) is isomorphic to the group of unit quaternions

{a1+ bi+ cj+ dk : a, b, c, d ∈ R, a2 + b2 + c2 + d2 = 1}.

Proof of Theorem 13.113.1. First we check that the image of Φ is in SO(3,R). Since φA is an
orthogonal transformation on su(2), we only need to check that det(φA) = 1. Note that SU(2)
is connected and the determinant is a continuous map to {±1}, so the determinant must be
constantly 1.

In order to prove surjectivity, we first verify the group operation of SU(2) on the unit sphere
of su(2) is transitive. This is because of the conjugacy class description of SU(2): any two trace
zero matrices in SU(2) are conjugate.
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Next we show that for any fixed axis, we have a surjective homomorphism from the stabilizer
subgroup to SO(2,R). Without loss of generality, we consider the axis i. Then we can consider
the subgroup

H = {Aθ ∈ SU(2) : Aθ = cos(θ)1+ sin(θ)i}.

Then A−1
θ = cos(θ)1− sin(θ)i. So φAθ

fixes i:

φAθ
(i) = AθiA

−1
θ

= (cos(θ)1+ sin(θ)i)i(cos(θ)1− sin(θ)i)

= i.

Next we compute the action of φAθ
on the orthogonal complement of i:

φAθ
(j) = AθjA

−1
θ

= (cos(θ)1+ sin(θ)i)j(cos(θ)1− sin(θ)i)

= cos(2θ)j+ sin(2θ)k,

and

φAθ
(k) = AθkA

−1
θ

= (cos(θ)1+ sin(θ)i)k(cos(θ)1− sin(θ)i)

= − sin(2θ)j+ cos(2θ)k.

Thus the map φAθ
restricted on the orthogonal complement of i is a rotation by angle 2θ. So we

have a surjective homomorphism from H to SO(2,R).
Next we use a standard trick in group operations. Let v be any unit vector in su(2). Then

we can find some P ∈ SU(2) such that φP (i) = v. Then the group PHP−1 is in the stabilizer
subgroup of v. And we have a surjective homomorphism from PHP−1 to SO(2,R) by sending
PHP−1 3 A 7→ φP ◦ φA ◦ φP−1 ∈ SO(2,R).

Finally any element in SO(3,R) fixed some v in the unit sphere of su(2), we conclude that
Φ : SU(2) → SO(3,R) is surjective.

The kernel of Φ is {± I2} since these are the only two matrices act trivially on su(2). Or you
can check it from the explicit centers from the quaternions.

One important consequence of Theorem 13.113.1 is that SU(2) is simply connected, and the
special orthogonal group SO(3,R) has fundamental group Z/2Z. This can be reflected by the
famous experiment of Dirac’s belt, or the plate trick.

14 Examples of Lie groups and Lie algebras
Lie groups and Lie algebras are important tools to study continuous symmetries. For example,
the orthogonal group O(3,R) is a Lie group which describes the continuous symmetries of the
3-dimensional space preserving the standard inner product. Continuous symmetry of a physic
system usually corresponds to conservation laws. This is the famous Noether’s theorem. If we
consider all the symmetries of the 3-dimensional space preserving the distance, then we get a
bigger Lie group containing both O(3,R) and translation group R3 as subgroups. The total
dimension of the symmetries is 6 and they correpond to three angular momenta and three linear
momenta in physics. If we combine the symmetry in time axis, then we also have another
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dimension corresponding to energy. The definition and general properties involves differential
geometry, and we will only give some examples here instead of proving the full theory for general
cases.

A Lie group is a group G which is also a smooth manifold such that the group operations
(multiplication and inversion) are smooth maps. A Lie algebra is a vector space g over a field
R equipped with a bilinear map [·, ·] : g × g → g called the Lie bracket satisfying the following
properties:

(1) [x, x] = 0 for any x ∈ g (anticommutativity);

(2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for any x, y, z ∈ g (Jacobi identity).

The definition of Lie algebra is motivated by the commutator operation on square matrices. If
we consider the general linear group GL(n,R), then its Lie algebra is the general linear Lie algebra
gl(n,R) = Mn(R) with the Lie bracket defined by [A,B] = AB − BA for any A,B ∈ Mn(R).
These two objects are related by the exponential map:

exp : gl(n,R) → GL(n,R), exp(A) =

∞∑
k=0

Ak

k!
.

The exponential map is a local diffeomorphism around the identity element of GL(n,R) and the
zero element of gl(n,R). This is because the following differential equation:

d

dt
exp(tA) = A exp(tA) = exp(tA)A,

with initial condition exp(0) = In has a unique solution. So the differential of exp at 0 is the
identity map:

d(exp)0(A) = A,

for any A ∈ gl(n,R).
The exponential map also changes the addition in the Lie algebra to the multiplication in the

Lie group. More precisely, we have the Baker-Campbell-Hausdorff formula:

exp(tA) exp(tB) = exp

(
tA+ tB +

t2

2
[A,B] +

t3

12
([A, [A,B]] + [B, [B,A]]) + · · ·

)
,

for any A,B ∈ gl(n,R).
When A = B, we have

exp(tA) exp(sA) = exp((t+ s)A).

So the bracket operation in the Lie algebra measures the noncommutativity of the multipli-
cation in the Lie group.

The equality
exp(tA) exp(sA) = exp((t+ s)A)

can also be viewed as a group homomorphism from the additive group R to the Lie group
GL(n,R). So the exponential map gives us a one-parameter subgroup of the Lie group
GL(n,R) generated by A ∈ gl(n,R).

Consider the subgroup called special linear group SL(n,R) is defined by

SL(n,R) = {A ∈ GL(n,R) : detA = 1}.
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Its Lie algebra is the special linear Lie algebra

sl(n,R) = {A ∈Mn(R) : tr(A) = 0}.

This can be read from the exponential map as follows:

det(exp(A)) = exp(tr(A)).

So exp(A) ∈ SL(n,R) if and only if tr(A) = 0.
Similarly, the orthogonal group O(n,R) is defined by

O(n,R) = {A ∈ GL(n,R) : ATA = In}.

Its Lie algebra is the orthogonal Lie algebra

o(n,R) = {A ∈Mn(R) : AT = −A}.

This can be read from the exponential map as follows:

(exp(tA))T exp(tA) = exp(tAT ) exp(tA) = exp(t(AT +A)) +O(t2).

So exp(A) ∈ O(n,R) if and only if AT = −A.
We can also embedd the complex linear group GL(n,C) into GL(2n,R) via the map

A+B
√
−1 7→

(
A −B
B A

)
,

for any A,B ∈Mn(R). Then the Lie algebra of GL(n,C) can be identified with

gl(n,C) = {A+B
√
−1 : A,B ∈Mn(R)}

with the bracket operation defined by

[X,Y ] = XY − Y X,

for any X,Y ∈ gl(n,C).
The unitary group U(n) is defined by

U(n) = {A ∈ GL(n,C) : AA∗ = In}.

Its Lie algebra is the unitary Lie algebra

u(n) = {A ∈Mn(C) : A∗ = −A}.

The special unitary group SU(n) is defined by

SU(n) = {A ∈ GL(n,C) : AA∗ = In, detA = 1}.

Its Lie algebra is the special unitary Lie algebra

su(n) = {A ∈Mn(C) : A∗ = −A, tr(A) = 0}.

A challenge problem is to compute the Lie algebra of the symplectic group Sp(2n,R)
defined by

Sp(2n,R) = {A ∈ GL(2n,R) : ATJA = J},
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where
J =

(
On In
−In On

)
.

Its Lie algebra is
sp(2n,R) = {A ∈M2n(R) : ATJ + JA = 0}.

A very nontrivial and powerful result in Lie group theory is the following, which we will not
prove here.

Theorem 14.1. For any Lie group G, its closed subgroup H is also a Lie group.

In other words, if you have any continuous equation defining a subgroup of GL(n,R), then
the solution set is also a Lie group.

The study of Lie group is usually reduced to the study of Lie algebra via the exponential
map. The following theorem shows that any finite dimensional Lie algebra can be integrated to
a Lie group.

Theorem 14.2 (Lie’s Third Theorem). For any finite dimensional Lie algebra g over R, there
exists a Lie group G such that the Lie algebra of G is isomorphic to g.

The dimension of the Lie group is the same as the dimension of its Lie algebra as a vector
space, or the number of parameters needed to describe the Lie group locally around the identity
element.

Recall the spetral theorems for orthogonal and unitary matrices, we can now relate them by
Lie groups and Lie algebras. For example, the spectral theorem for orthogonal matrices have
2×2 rotation blocks corresponding to complex eigenvalues and also 1×1 blocks corresponding to
real eigenvalues ±1. The corresponding blocks in the Lie algebra (or skew-symmetric matrices)
are 2×2 skew-symmetric matrices and also 1×1 zero blocks. The exponential map sends the 2×2
skew-symmetric blocks to the 2× 2 rotation blocks, and sends the 1× 1 zero blocks to the 1× 1
identity blocks. Under the exponential map, each 2× 2 skew-symmetric block generates a circle
subgroup which is isomorphic to SO(2,R), and this is a one-parameter subgroup of O(n,R).

15 Excercies
15.1 Mandatory part
Excercise 15.1. Is it true that the conjugacy classes of unitary group U(2) are determined by
the trace and determinant? Prove your answer.

Excercise 15.2.

Definition 15.1 (Orthogonal Group of Signature (p, q)). Let p, q be non-negative integers. The
orthogonal group of signature (p, q), denoted by Op,q, is defined as the group of all linear trans-
formations on Rp+q that preserve the bilinear form

〈x, y〉 = x1y1 + x2y2 + · · ·+ xpyp − xp+1yp+1 − · · · − xp+qyp+q,

for all x, y ∈ Rp+q.
Let W be the space of real trace-zero 2× 2 matrices W = {A ∈ M2×2(R)|trace(A) = 0}. W

has a basis B = (w1, w2, w3) , where

w1 =

[
1

−1

]
, w2 =

[
0 1
1 0

]
, w3 =

[
0 1
−1 0

]
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1. Show that the symmetric bilinear form defined by 〈A,A′〉 = trace (AA′) has signature (2, 1).
(Hint: use basis B)

2. Prove that P ⋆ A = PAP−1 defines a linear group operation of SL(2,R) on the space W.

3. Use this operation to define a group homomorphism φ : SL(2,R) → O2,1.

4. Prove the kernel of this homomorphism is {±I}.
This construction actually shows that SL(2,R) is a double cover of SO+

2,1, the connected
component of O2,1 containing the identity matrix. Or equivalently, PSL(2,R) = SL(2,R)/{±I}
is isomorphic to the spin group SO+(2, 1). It is an interesting question to show that the orthogonal
group O2,1 has four connected components and identify the geometry of each component.

A similar excercise is to relate SL(2,C) to the orthogonal group O(3, 1). see Artin Algebra
Chapter 9, 4.8
Excercise 15.3. Let A be the set of all n×n upper triangular matrices with real entries and all
diagonal entries equal to 1. Find the Lie algebra of A and compute its dimension.
Excercise 15.4. Show that the intersection of symplectic group Sp(2n,R) and orthogonal group
O(2n,R) in GL(2n,R) is isomorphic to the unitary group U(n). Here we use the embedding of
these groups into GL(2n,R) as Section Examples of Lie groups and Lie algebras.
Excercise 15.5. Prove the Jacobi identity of Lie algebra gl(n,R) =Mn(R) using the properties
of the matrix commutator. Here

[A,B] = AB −BA.

15.2 Optional excercises
Excercise 15.6. Prove that the Lie algebra of the symplectic group Sp(2n,R) is

sp(2n,R) = {A ∈M2n(R) : ATJ + JA = 0},

where
J =

(
On In
−In On

)
.

Excercise 15.7. Prove the second and the third order term in the Baker-Campbell-Hausdorff
formula when X,Y are elements of Mn(R). That is, prove

exp(tX) exp(tY ) = exp

(
t(X + Y ) +

1

2
t2[X,Y ] +

1

12
t3([X, [X,Y ]] + [Y, [Y,X]]) + · · ·

)
You may use the following expansion of logarithm:

log(I +A) = A− 1

2
A2 +

1

3
A3 − · · ·

16 Group representations: basic concepts
Group representation theory studies the ways in which a group can act on vector spaces via
linear transformations. It is a powerful way to study symmetry and structure in mathematics.
It is much more than a tool in abstract group theory; it provides deep insights into their nature.
Actually, groups are usually appearing as their representations. Representations themselves are
crucial and central objects in mathematics. This section introduces the basic definitions and
concepts in group representation theory.
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16.1 Linear operation, Matrix Representations and Conjugacy
Definition 16.1. The general linear group over a field F is defined as:

GL(n, F ) = {A ∈Mn(F ) | detA 6= 0}.

Definition 16.2. Let V be a finite-dimensional vector space over F . The general linear group
of V is:

GL(V ) = {f : V → V | f is an invertible linear transformation}.

Let dimV = n and fix a basis B = (e1, . . . , en) of V . For any linear transformation f : V → V ,
we have the matrix representation RB(f) such that

f(e1, . . . , en) = (e1, . . . , en) ·RB(f).

If B′ = (v1, . . . , vn) is another basis with change-of-basis matrix P (i.e., (v1, . . . , vn) =
(e1, . . . , en) · P ), then

RB′(f) = P−1RB(f)P.

Definition 16.3. A representation of a group G on a vector space V is a group homomorphism

ρ : G→ GL(V ).

Equivalently, it is a group action G× V → V , denoted by (g, v) 7→ g · v, satisfying:

g · (v + w) = g · v + g · w,
g · (λv) = λ(g · v),

for all g ∈ G, v, w ∈ V , and λ ∈ F . Such an action is called a linear group action.

Given a representation ρ : G → GL(V ) and a basis B of V , we obtain a matrix represen-
tation or a group homomorphism:

R : G→ GL(n, F ), g 7→ RB(ρ(g)).

Two matrix representations R and R′ are said to be conjugate if there exists P ∈ GL(n, F )
such that

PR(g)P−1 = R′(g) ∀g ∈ G.

Definition 16.4. Two representations ρ : G → GL(V ) and ρ′ : G → GL(V ′) are isomorphic
if there exists an isomorphism f : V → V ′ such that

f(g · v) = g · f(v) ∀g ∈ G, v ∈ V.

From the discussion about change of basis, we see that

Proposition 16.1. Two representations are isomorphic if and only if their corresponding matrix
representations are conjugate.

To summarize, we have three equivalent viewpoints of group representations:

• A group homomorphism ρ : G→ GL(V );

• A linear group action of G on V ;

• A matrix representation R : G→ GL(n, F ) for some n.

The isomorphism classes of finite-dimensional representations correspond to conjugacy classes of
matrix representations.
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16.2 Unitary Representations
Assume F = C. Let V be a complex inner product space, with postive definite Hermitian form
〈·, ·〉. A representation ρ : G → GL(V ) is called a unitary representation if Im ρ ⊆ U(V ),
where U(V ) is the unitary group.

Theorem 16.1. Let G be a finite group and ρ : G→ GL(V ) a representation. Then there exists
a positive definite Hermitian form 〈·, ·〉 on V that is G-invariant, i.e.,

〈g · v, g · w〉 = 〈v, w〉 ∀g ∈ G, v, w ∈ V.

Hence, ρ is unitary with respect to this form.

Proof. Start with any positive definite Hermitian form 〈·, ·〉0 on V . Define a new form by aver-
aging over the group:

〈v, w〉G =
1

|G|
∑
g∈G

〈g · v, g · w〉0.

One checks that 〈·, ·〉G is still a positive definite Hermitian form and is G-invariant.

This is a fundamental result in representation theory of finite groups, allowing us to always
work with unitary representations when the field is C. The key idea is to average an arbitrary
inner product over the group to obtain a G-invariant one. This technique is known as averag-
ing and will be used frequently in representation theory. For example, if you work with real
representations, you can also try to prove that every real representation of a finite group admits
an invariant real inner product, or equivalently, any matrix representation is conjugate to one
with image in the orthogonal group O(n).

16.3 Invariant Subspaces and Orthogonal Decomposition
Definition 16.5. Let ρ : G → GL(V ) be a representation. A subspace W ⊆ V is called G-
invariant if g · w ∈ W for all g ∈ G and w ∈ W . This also means that the restriction of ρ to
W defines a subrepresentation.

Theorem 16.2. Let G be a finite group and ρ : G → GL(V ) a unitary representation. For any
G-invariant subspace W ⊆ V , the orthogonal complement W⊥ (with respect to a G-invariant
inner product) is also G-invariant, and we have the decomposition

V =W ⊕W⊥.

Proof. Choose a G-invariant inner product 〈·, ·〉 on V . For w ∈W and v ∈W⊥, we have

〈w, g · v〉 = 〈g−1 · w, v〉 = 0,

since g−1 · w ∈W . Hence g · v ∈W⊥, so W⊥ is G-invariant.

16.4 Irreducible Representations
Definition 16.6. A representation ρ : G→ GL(V ) is called irreducible if V has no nontrivial
G-invariant subspaces (i.e., the only G-invariant subspaces are {0} and V itself).
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Example 16.1. Let F = Fp (the finite field with p elements), G = Fp (additive group), and
V = F2

p. Define the representation R : G→ GL(2,Fp) by

t 7→
(
1 t
0 1

)
.

Then the subspace W =

{(
x
0

)
| x ∈ Fp

}
is G-invariant. However, there is no complementary

G-invariant subspace W ′ such that V = W ⊕W ′. This shows that the theorem on orthogonal
decomposition requires an inner product (and hence the field to be C and the representation to be
unitary).

16.5 Semisimplicity
A fundamental result in the representation theory of finite groups over C is that every representa-
tion can be decomposed into irreducible pieces. This property is known as complete reducibility
or semisimplicity.

Theorem 16.3 (Maschke’s Theorem). Let G be a finite group and V a finite-dimensional
representation of G over C. Then V is isomorphic to a direct sum of irreducible representations.
That is,

V ∼= V ⊕m1
1 ⊕ V ⊕m2

2 ⊕ · · · ⊕ V ⊕mk

k ,

where the Vi are pairwise non-isomorphic irreducible representations of G.

Proof. We proceed by induction on dimV . If V is irreducible, we are done. Otherwise, let
W ⊂ V be a nontrivial G-invariant subspace. By Theorem 3.2, we can find a G-invariant inner
product on V , and then V = W ⊕W⊥ with W⊥ also G-invariant. By induction, both W and
W⊥ decompose into irreducibles, hence so does V .

This theorem shows that irreducible representations are the basic building blocks of all rep-
resentations of finite groups over C. The study of these irreducible representations—their clas-
sification, dimensions, and characters—is the central goal of representation theory.

17 Examples of Group Representations
Now that we have established the basic framework, let us examine some concrete examples of
group representations to illustrate these concepts in action.

Example 17.1 (Trivial Representation). The simplest example is the trivial representation:

ρ : G→ GL(1,C) = C×, g 7→ 1.

Here every group element acts as the identity transformation.

Example 17.2 (Dihedral Group). The dihedral group Dn has a natural representation as or-
thogonal transformations of the plane:

Dn → O(2) ⊂ GL(2,R) ⊂ GL(2,C).

This representation is generated by a rotation a and a reflection b satisfying the relations an = 1,
b2 = 1, and bab−1 = a−1.
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Definition 17.1 (Group Algebra). Given a group G and a field F , the group algebra F [G] is
defined as:

F [G] =

∑
g∈G

agg | ag ∈ F

 .

The group G acts on F [G] by left multiplication:

h ·

∑
g∈G

agg

 =
∑
g∈G

ag(hg).

This is called the regular representation of G.

Example 17.3 (Permutation Representation). Let G act on a finite set X = {x1, . . . , xn}.
Consider the vector space FX = {

∑
x∈X axx | ax ∈ F}. Then G acts on FX by permuting the

basis vectors:

g ·

(∑
x∈X

axx

)
=
∑
x∈X

ax(g · x).

This yields a representation G→ GL(n, F ).
For example, take G = Sn acting on the standard basis {e1, . . . , en} of Cn. Then the subspace

W = span{e1 + · · · + en} is G-invariant. With respect to the standard Hermitian form, its
orthogonal complement

W⊥ =

{
n∑

i=1

aiei |
n∑

i=1

ai = 0

}
is also G-invariant, giving a decomposition Cn =W ⊕W⊥ as Sn-representations.

18 Constructions of Representations
Having seen several examples, we now turn to systematic methods for constructing new repre-
sentations from existing ones. These constructions are fundamental for building more complex
representations from simpler building blocks.

18.1 Direct Sums and Quotients
Definition 18.1 (Direct Sum). Let V and W be representations of G. Their direct sum V ⊕W
is the representation on the direct sum of vector spaces, with G acting componentwise:

g · (v, w) = (g · v, g · w).

In matrix form, if V and W have matrix representations RV and RW , then the representation
on V ⊕W is given by block diagonal matrices:

g 7→
[
RV (g) 0

0 RW (g)

]
.

Definition 18.2 (Quotient Representation). Let W ⊆ V be a G-invariant subspace. The quo-
tient representation on V/W is defined by

g · (v +W ) = (g · v) +W.
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In matrix form, after choosing a basis adapted to W , the representation on V takes the form:

g 7→
[
RW (g) ∗

0 RV/W (g)

]
,

where RW and RV/W are the matrix representations on W and V/W respectively.

18.2 G-Homomorphisms
To compare different representations and understand their structure, we need the notion of maps
that respect the group action.

Definition 18.3 (G-Homomorphism). Let V and W be representations of G. A linear map
f : V →W is called a G-homomorphism (or intertwining operator) if

f(g · v) = g · f(v) ∀g ∈ G, v ∈ V.

We denote by HomG(V,W ) the space of all such maps.

Proposition 18.1. Let f : V →W be a G-homomorphism. Then ker f is a G-invariant subspace
of V , and =f is a G-invariant subspace of W . Moreover, the induced map f̄ : V/ ker f → =f is
an isomorphism of representations.

18.3 Schur’s Lemma
One of the most powerful tools in representation theory is Schur’s Lemma, which describes the
structure of G-homomorphisms between irreducible representations.

Theorem 18.1 (Schur’s Lemma). Let V and W be irreducible representations of G over C.
Then:

1. If V and W are not isomorphic, then HomG(V,W ) = 0.

2. If V =W , then HomG(V, V ) = C · IV .

Proof. Let T ∈ HomG(V,W ). Since V is irreducible and kerT is G-invariant, either kerT = V
or kerT = 0. Similarly, =T is G-invariant in W , so either =T = 0 or =T =W .

If T 6= 0, then kerT = 0 and =T =W , so T is an isomorphism. This proves (1).
For (2), let T ∈ HomG(V, V ). Since C is algebraically closed, T has an eigenvalue λ. Then

T − λ IV ∈ HomG(V, V ) is not invertible, hence must be zero by the argument above. Thus
T = λ IV .

18.4 Dual Representation
Another important construction is the dual representation, which corresponds to the contragre-
dient action.

Definition 18.4 (Dual Representation). Let V be a representation of G. The dual represen-
tation V ∗ = Hom(V,C) is defined by

(g · f)(v) = f(g−1 · v) ∀f ∈ V ∗, v ∈ V, g ∈ G.

In matrix terms, if we choose a basis B = (v1, . . . , vn) of V and the dual basis B∗ =
(f1, . . . , fn) of V ∗ (satisfying fi(vj) = δij), then the matrix representation for V ∗ is given by:

RV ∗(g) = (RV (g)
−1)⊤.
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18.5 Tensor Product
Tensor products provide a way to combine representations, which is particularly important in
physics and the study of product groups.

Definition 18.5 (Tensor Product of Representations). Let V and W be representations of G.
Their tensor product V ⊗W is the representation on the tensor product of vector spaces, with
G acting diagonally:

g · (v ⊗ w) = (g · v)⊗ (g · w).

If V has basis {v1, . . . , vn} and W has basis {w1, . . . , wm}, then {vi⊗wj} is a basis of V ⊗W ,
and any element can be written as

∑
aijvi ⊗wj . The action of G in coordinates is given by the

Kronecker product of the matrices for V and W .

Lemma 18.1. There is a natural isomorphism of vector spaces:

Γ : V ∗ ⊗W → Hom(V,W ),

defined by Γ(f ⊗ w)(v) = f(v)w. Moreover, if V and W are representations of G, then Γ is an
isomorphism of representations when Hom(V,W ) is equipped with the action

(g · T )(v) = g · T (g−1 · v).

Proof. For surjectivity, let B = (v1, . . . , vn) be a basis of V and C = (w1, . . . , wm) a basis of W .
Given T ∈ Hom(V,W ) with matrix (aij) relative to B and C, let (f1, . . . , fn) be the dual basis
of B. Then

Γ

∑
i,j

aijfj ⊗ wi

 (vk) =
∑
i

aikwi = T (vk).

Thus Γ is surjective, and by dimension count it is an isomorphism.

Conclusion
In this chapter we have introduced the fundamental concepts of group representation theory.
Starting from basic definitions, we explored various constructions of representations and proved
key results such as Schur’s Lemma and Maschke’s Theorem. These tools provide the foundation
for the deeper study of group representations, including character theory and the classification
of irreducible representations, which we will explore in subsequent chapters.
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