## RT Exam

## August 11th 2025

If you use a conclusion from the homework, please also write down its proof on the exam paper.

**Problem 1.** Consider the following elements (permutations) of the symmetric group  $S_5$ :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 3 & 1 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}.$$

Compute the product  $\sigma\tau$ .

**Problem 2.** Let G be a group of order 15. Is G always abelian? If so, prove it. If not, give a counterexample of a non-abelian group of order 15.

**Problem 3.** Write down the character table of the group  $S_3$ . Let V be the irreducible representation of  $S_3$  with maximal dimension. Write down the irreducible decomposition of  $V \otimes V$  (you only need to write down the multiplicity of each irreducible representation).

**Problem 4.** Find the number of Sylow p-subgroups in  $GL(n, \mathbb{F}_p)$  for a prime p and a positive integer n.

**Problem 5.** Let G be a group and let H be a subgroup of G. For a representation  $\varphi \colon G \to \operatorname{GL}(V)$ , the restriction to H, denoted  $\varphi_H$ , is the group representation defined by  $\varphi_H(h) = \varphi(h)$  for all  $h \in H$ . Let  $\rho$  be the regular representation of G on  $\mathbb{C}[G]$ . Prove that the restriction of  $\rho$  to H is isomorphic to a direct sum of copies of the regular representation of H.

**Problem 6.** We call a group G simple if it is not the trivial group  $\{e\}$  and its only normal subgroups are  $\{e\}$  and G. Assume G is a non-abelian simple group. Prove that G has no faithful complex representation of dimension 2.