RT HW3

Due 8/4 please submit your solutions to the TAs in tutorial session

July 29, 2025

Problem 1. Classify subgroups and normal subgroups of D_n for $n \geq 3$.

Problem 2. Prove that $G = GL(2, \mathbb{F}_2)$ is isomorphic to S_3 by the action of G on $(\mathbb{F}_2)^2$.

Similarly, define $PGL(2, \mathbb{F}_3) = GL(2, \mathbb{F}_3)/D$, where $D = \{\lambda I_2 \mid \lambda \in \mathbb{F}_3^{\times}\}$. Prove that $PGL(2, \mathbb{F}_3) \cong S_4$. Hint: Consider the action of $GL(2, \mathbb{F}_3)$ on the set of all one-dimensional subspaces of $(\mathbb{F}_3)^2$.

Problem 3. Second Isomorphism Theorem. Let H be a normal subgroup of group G and K be a subgroup of G. Prove

- 1. $HK = \{hk | h \in H, k \in K\}$ is a subgroup of G.
- 2. $H \cap K$ is a normal subgroup of K.
- 3. There is an isomorphism $HK/H \cong K/H \cap K$.

Problem 4. Let O_1, \dots, O_k be all the conjugacy classes in a finite group G. Choose $x_i \in O_i$ and let $C_i = \{g \in G | gx_ig^{-1} = x_i\}$ (which is called the centralizer of x_i). Denote $n_i = |C_i|$. Prove

$$\frac{1}{n_1} + \frac{1}{n_2} + \dots + \frac{1}{n_k} = 1$$

Problem 5. (Semidirect product) Let H and K be two groups and $\phi \colon K \to \operatorname{Aut}(H)$ be a group homomorphism. Define a binary operation on $H \times K$ by $(h,k)(h',k') = (h\varphi(k)(h'),kk')$. Check this binary operation gives a group structure. Prove that the subsets $\{e_H\} \times K$ and $H \times \{e_K\}$ are subgroups of this group and $H \times \{e_K\}$ is a normal subgroup.

Problem 6. Let G be a group generated by real valued functions $f = \frac{1}{x}$ and $g = \frac{x-1}{x}$ via composition of functions. Prove that G is isomorphic to S_3 .

Problem 7. Find the number of Sylow p-subgroups in $GL(n, \mathbb{F}_p)$ for a prime p and a positive integer n.

Problem 8. Find the number of isomorphism classes of groups of order 55.