RT HW4

Due 8/6, please submit your solutions to the TAs in tutorial session

August 2, 2025

Problem 1. Let $\mathbb{Z}/n\mathbb{Z}$ be the residue classes modulo positive integer n. Assume $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the set of residue classes coprime to n. It forms a group under usual multiplication of residue classes. Prove that the group of automorphisms of $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to the group of units $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Problem 2. In this exercise, we will investigate the conjugacy classes of the symmetric group S_n . Let i_1, \dots, i_l be distinct integers in $\{1, \dots, n\}$. A cycle (i_1, \dots, i_l) is a permutation of S_n that sends i_1 to i_2 , i_2 to i_3 , ..., i_{l-1} to i_l , i_l back to i_1 , and leaves other integers fixed. The number l is called the length of the cycle. Two cycles (i_1, \dots, i_l) and (j_1, \dots, j_k) are disjoint if they do not share any common integers.

1. Prove that two disjoint cycles commute, i.e., if (i_1, \dots, i_l) and (j_1, \dots, j_k) are disjoint cycles in S_n , then

$$(i_1, \dots, i_l)(j_1, \dots, j_k) = (j_1, \dots, j_k)(i_1, \dots, i_l).$$

- 2. Prove that every permutation in S_n can be written as a product of disjoint cycles. This product is unique up to the order of the cycles. (Hint: consider the action of $\langle \sigma \rangle$ on [n] and the orbits.)
- 3. Let $\sigma = (i_1, \dots, i_l)$ be a cycle of length l in S_n . Prove that $\tau \sigma \tau^{-1} = (j_1, \dots, j_l)$ is a cycle of length l for any $\tau \in S_n$, where $j_k = \tau(i_k)$.
- 4. Prove that the conjugacy classes of S_n are in one-to-one correspondence with the partitions of n.

Problem 3. Write O(2) as a semi-direct product of SO(2) with $\mathbb{Z}/2\mathbb{Z}$, and O(3) as a direct product of SO(3) with $\mathbb{Z}/2\mathbb{Z}$.

Problem 4. A rigid motion of the plane is a map $f: \mathbb{R}^2 \to \mathbb{R}^2$ of the form

$$f(x) = Ax + b$$

where A is a 2×2 orthogonal matrix, i.e., $A \in O(2)$, and $b \in \mathbb{R}^2$ is a vector in the plane. The rigid motions of the plane form a group G under composition of maps. Prove that the group G preserves the distance between points in \mathbb{R}^2 , i.e., for any $f \in G$ and any points x and y in \mathbb{R}^2 , we have

$$d(f(x), f(y)) = d(x, y),$$

where d is the usual Euclidean distance in \mathbb{R}^2 . The group G of rigid motions of the plane is isomorphic to the semi-direct product $\mathbb{R}^2 \rtimes O(2)$.

Problem 5. Find the number of conjugacy classes and the number of elements in each conjugacy class for the rotation symmetry groups of Platonic solids. You can use the fact that $T \cong A_4$, $O \cong S_4$ and $I \cong A_5$. Can you interpret your result in terms of the geometry of Platonic solids? (Hint: use the geometric interpretation of BAB^{-1} for $A \in SO(3)$ and $B \in SO(3)$.)

Problem 6. Let P_1, P_2 be two planes in \mathbb{R}^3 intersecting at a line l. Show that the composition of the two reflections with respect to P_1 and P_2 is a rotation around l. The rotation angle is twice the angle between the two planes.