RT HW4 ## Due 8/6, please submit your solutions to the TAs in tutorial session ## August 2, 2025 **Problem 1.** Let $\mathbb{Z}/n\mathbb{Z}$ be the residue classes modulo positive integer n. Assume $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the set of residue classes coprime to n. It forms a group under usual multiplication of residue classes. Prove that the group of automorphisms of $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to the group of units $(\mathbb{Z}/n\mathbb{Z})^{\times}$. **Problem 2.** In this exercise, we will investigate the conjugacy classes of the symmetric group S_n . Let i_1, \dots, i_l be distinct integers in $\{1, \dots, n\}$. A cycle (i_1, \dots, i_l) is a permutation of S_n that sends i_1 to i_2 , i_2 to i_3 , ..., i_{l-1} to i_l , i_l back to i_1 , and leaves other integers fixed. The number l is called the length of the cycle. Two cycles (i_1, \dots, i_l) and (j_1, \dots, j_k) are disjoint if they do not share any common integers. 1. Prove that two disjoint cycles commute, i.e., if (i_1, \dots, i_l) and (j_1, \dots, j_k) are disjoint cycles in S_n , then $$(i_1, \dots, i_l)(j_1, \dots, j_k) = (j_1, \dots, j_k)(i_1, \dots, i_l).$$ - 2. Prove that every permutation in S_n can be written as a product of disjoint cycles. This product is unique up to the order of the cycles. (Hint: consider the action of $\langle \sigma \rangle$ on [n] and the orbits.) - 3. Let $\sigma = (i_1, \dots, i_l)$ be a cycle of length l in S_n . Prove that $\tau \sigma \tau^{-1} = (j_1, \dots, j_l)$ is a cycle of length l for any $\tau \in S_n$, where $j_k = \tau(i_k)$. - 4. Prove that the conjugacy classes of S_n are in one-to-one correspondence with the partitions of n. **Problem 3.** Write O(2) as a semi-direct product of SO(2) with $\mathbb{Z}/2\mathbb{Z}$, and O(3) as a direct product of SO(3) with $\mathbb{Z}/2\mathbb{Z}$. **Problem 4.** A rigid motion of the plane is a map $f: \mathbb{R}^2 \to \mathbb{R}^2$ of the form $$f(x) = Ax + b$$ where A is a 2×2 orthogonal matrix, i.e., $A \in O(2)$, and $b \in \mathbb{R}^2$ is a vector in the plane. The rigid motions of the plane form a group G under composition of maps. Prove that the group G preserves the distance between points in \mathbb{R}^2 , i.e., for any $f \in G$ and any points x and y in \mathbb{R}^2 , we have $$d(f(x), f(y)) = d(x, y),$$ where d is the usual Euclidean distance in \mathbb{R}^2 . The group G of rigid motions of the plane is isomorphic to the semi-direct product $\mathbb{R}^2 \rtimes O(2)$. **Problem 5.** Find the number of conjugacy classes and the number of elements in each conjugacy class for the rotation symmetry groups of Platonic solids. You can use the fact that $T \cong A_4$, $O \cong S_4$ and $I \cong A_5$. Can you interpret your result in terms of the geometry of Platonic solids? (Hint: use the geometric interpretation of BAB^{-1} for $A \in SO(3)$ and $B \in SO(3)$.) **Problem 6.** Let P_1, P_2 be two planes in \mathbb{R}^3 intersecting at a line l. Show that the composition of the two reflections with respect to P_1 and P_2 is a rotation around l. The rotation angle is twice the angle between the two planes.