RT HW6

For you to practice representation theory, you can submit to the TAs if you want to get feedback.

August 8, 2025

Problem 1. Let [G,G] be subgroup of G generated by all commutators $[g,h] = ghg^{-1}h^{-1}$ for $g,h \in G$.

- 1. Show that [G, G] is a normal subgroup of G.
- 2. Show that G/[G,G] is abelian.
- 3. Show that if H is abelian and $\phi \colon G \to H$ is a group homomorphism, then $[G,G] \subset \ker \phi$.
- 4. Prove that there is an one-to-one correspondence between the one-dimensional representations of G and the irreducible representations of G/[G,G].

Problem 2. Let $SL(2,\mathbb{R})$ be the group of 2×2 real matrices with determinant 1 and W be the real vector space of 2×2 real matrices with trace 0.

- 1. Show that W is a real vector space of dimension 3.
- 2. Show that W is a $SL(2,\mathbb{R})$ -representation by defining the action of $SL(2,\mathbb{R})$ on W by

$$A \cdot X = AXA^{-1}$$

for $A \in \mathrm{SL}(2,\mathbb{R})$ and $X \in W$.

3. Show that the bilinear form on W

$$\langle X, Y \rangle = \operatorname{tr}(XY)$$

is $SL(2,\mathbb{R})$ -invariant.

- 4. Find the signature (p,q) of the bilinear form $\langle \cdot, \cdot \rangle$.
- 5. (Optional) Let O(p,q) be the group of linear transformations on W that preserve the bilinear form $\langle \cdot, \cdot \rangle$. Find the image and kernel of the representation $SL(2,\mathbb{R}) \to O(p,q)$.

Problem 3. From class, we know that the character χ_{reg} of regular representation satisfies $\chi_{reg}(g) = 0$ if $g \neq e$. There is an inverse of this proposition. Let χ be a character of G and satisfies $\chi(g) = 0$ if $g \neq e$. Prove that the corresponding representation is the direct sum of several copies of regular representation, i.e. $\rho \cong \rho_{reg} \oplus \rho_{reg} \cdots \oplus \rho_{reg}$ for some integer n.