
Representation theory projects

1 Project 1 Groups: generators and relations
In this project, we will study groups generated by reflections.

1.1 Symmetric group
Let Sn be the symmetric group on n elements. In homework, you studied the generators of
Sn as transpositions, si = (i, i+ 1) and their relations. More precisely,

1. Show that every element in Sn can be written as a product of elements in {s1, s2, . . . , sn−1}.

2. Prove that the elements satisfy the following equalities:

sisj = sjsi if |i− j| > 1,

sisi+1si = si+1sisi+1,

s2i = e for all i.

3. For each permutation σ ∈ Sn, define the number of inversions of σ as the number of
pairs (i, j) such that i < j and σ(i) > σ(j). Show that the number of inversions is
equal to the minimal number of si used to express σ as their product (counted with
multiplicities). For example, the number for σ = s1s2s1 is three.

4. Show that the relations above are sufficient to determine the group Sn, i.e., for any
two different expressions of the same element in Sn, they can be transformed into each
other using the relations above.

5. Find the minimal sets of transpositions sij = (i, j) that generate Sn. How many are
there?

6. For each set of such generators, find the relations to determine the group Sn and prove
your conclusion.

1.2 Dihedral group
Let Dn be the symmetry group of a regular n-gon.

1. Find the minimal sets of reflections that generate Dn.

2. How many such sets are there?

3. Find the relations for each set of generators and prove your conclusion.



1.3 Symmetry group of Platonic solids
Let G be the symmetry group of a Platonic solid.

1. Find the minimal sets of reflections that generate G.

2. How many such sets are there?

3. Find the relations for one set of generators and prove your conclusion.

1.4 Symmetry group of tiling patterns
Let T be the tiling of the plane by equilateral triangles, and G be the symmetry group of
such a pattern.

1. Find one set of reflections that generate G.

2. Find the relations for the generators you choose and prove your conclusion.

3. Can you generalize your result to other regular tiling patterns, such as square or
hexagonal tiling?

4. Choose one set of reflections that generate G. For each element σ, find the number of
reflections used to express σ as their product.

2 Project 2 Groups and bilinear forms
In this project, we will study groups arising from certain shapes of hexagons. Consider
convex hexagons P with inner angles 2π

3
. Let the lengths of the sides be a1, · · · , a6 in the

counterclockwise orientation, and form a vector a = (a1, · · · , a6) ∈ R6.

1. Find the vector space W spanned by all such a.

2. Consider the group G generated by linear transformations Li, i = 1, · · · , 6 of W in
the form of

Li : ai 7→ −ai, ai−1 7→ ai−1 + 2ai, ai+1 7→ ai+1 + 2ai, aj 7→ aj, for other j

Check that W is invariant under the action of G and that G is an infinite group. Here
indices are taken modulo 6.

3. Find a bilinear form B : W ×W → R that group G preserves.

4. Is this bilinear form unique? If not, find all bilinear forms that are preserved by the
group G.



5. Denote by F the set of vectors a from all such hexagons. Fix a bilinear form in the
previous questions such that B(a, a) > 0 for some a ∈ F . Let C be the vectors v in W
such that B(v, v) > 0. Show that F is a subset of C. Describe the union of orbits of
F under the action of G.

6. Find finite subgroups of G. Can you find a classification of these kinds of finite sub-
groups?

7. Find the relations for the generators Li and prove your conclusion. (Hard problem,
you may just try to find and guess the relations, proving that they are all the relations
is a hard problem.)

8. Consider the shapes of P such that it admits a tiling (decomposition) into regular
triangles with unit length. Can you describe the possible vectors a from such P and
their G-orbits in W? What are the possible numbers of triangles used in the tiling
and for each n, is there a counting formula for c(n) the number of different shapes of
hexagons with n triangles? (Hard problem, but you can try to find a few examples
and reduce to an arithmetic problem, other shapes may result in a simpler form.)

9. Try the problem with other shapes, for example a quadrilateral, a pentagon with
certain inner angles you prefer.

3 Project 3 McKay conjecture
In this project, we will verify the McKay conjectures for some groups. Let G be a finite
group and P is a Sylow p-subgroup of G. Denote by NG(P ) the normalizer of P in G. The
McKay conjecture states that the number of irreducible representations of G with dimension
coprime to p is equal to the number of irreducible representations of NG(P ) with dimension
coprime to p. It was recently proved after a series of works by many mathematicians.

3.1 Finite subgroups of SO(3) and SU(2)

1. Consider the dihedral group Dn. List all the irreducible representations of Dn and
their dimensions.

2. Give the classification of Sylow p-subgroups of Dn and their normalizers.

3. For p = 2, verify the McKay conjecture for Dn.

4. For general prime number p, verify the McKay conjecture for Dn.

5. Consider finite subgroups of SO(3) and SU(2). List all the irreducible representations
of these groups and their dimensions.

6. Verify the McKay conjecture for finite subgroups of SO(3) and SU(2).



3.2 Groups of order pq and p2q

Assume p and q are two distinct prime numbers.

1. Let G be a group of order pq. List the possible isomorphism classes of G.

2. For each isomorphism class of G, list all the irreducible representations of G and their
dimensions.

3. Give the classification of Sylow p-subgroups of G and their normalizers.

4. Verify the McKay conjecture for G.

5. Generalize to groups of order p2q.

3.3 Groups of other orders
Can you generalize the McKay conjecture to groups of other types discussed in class? For
example, for GL(2,Fp) and its Sylow p-subgroups.

4 Project 4 McKay graph for finite groups
In this project, we will explore the McKay graph for other finite groups not discussed in class.
Let V be a fixed representation of finite group G. Consider all the isomorphism classes of
irreducible representations Vi of G. View all Vi as the vertices, and if Vj appears in the
irreducible decomposition of V ⊗ Vi with multiplicity nij, then draw nij edges from Vi to Vj.
The resulting graph is called the McKay graph of G with respect to V .

4.1 Symmetric group Sn

1. Consider Sn and the standard representation V of Sn on Cn. Construct all irreducible
representations of S3 and S4.

2. Draw the McKay graph for S3 and S4 with respect to the standard representation V .

3. How does the McKay graph change when we consider other representations V of S3, S4?

4.2 Subgroups in SO(3)

1. Consider all finite subgroups in SO(3). Construct all irreducible representations of G.

2. Let V be the standard representation of SO(3) on R3 and view it as a representation
on C3. Draw the McKay graph for each finite subgroup in SO(3) with respect to the
standard representation V .

3. How does the McKay graph change when we consider other representations V of G?



4.3 Finite subgroups in U(2)

1. Classify all finite subgroups in U(2). Construct all irreducible representations of G.

2. Let V be the standard representation of U(2) on C2. Draw the McKay graph for each
finite subgroup in U(2) with respect to the standard representation V .

3. How does the McKay graph change when we consider other representations V of G?

4.4 Other finite groups
You can also try a similar problem for finite groups of order pq or p2q for distinct primes p
and q. Make your own choice of V .


