Representation	Theory of groups	
Three parts	D Groups and group operations	(
	2 Representations of (finite) groups	•
	character theory.	
	3) Mikay correspondence and root system.	
	root system.	
D Grann		
D Groups.		
Group theory	is a way to describe	
the symmetry	of objects.	
Ex: Symmet	by of geometric objects.	
n-gon		
	with last time to	

rotations by reflection by o, 120°, 240°, (1, 12, 6).

sosce les thiangle symmetries. general" triangle. (Not special) Symmetry

of shapes.

'More Symmetries' means more special.

Pegular n-gons are the most special n-gons

dim'(Higher Tetrahidron Count # of votations $1 + 4 \times 2 + 3 \times 1 = 12$ 1200 I of reflections = 6. wepared combosed with reflections

Another way to count

Symmetries are classified by 4 different
beinds by looking at where 1 is
moved to . 1 - > 1

thun, Symmetry of If 11-12. Choose one symmetry and we ofto more 2 back to 1. then any = of this J-1- 1's of the first kind # of such r-12 = = # of such =. the same h (4)on, # = 6x k = 2k

Dodeca he don

Twelve faces. each is

a pentagon

Corahedron

In pairs

20 faus

= 20 × 6= 120

 $\chi^2 + \chi + 1 = 0$

a+b [-1. a, b & a.

ā - b V-1.

preserving the structure of algebra "+;" x"

the same" $a + b \sqrt{2} - b \sqrt{2}$ I more pries $X^{2}TX+1:0=1$ $X=\frac{-1+\sqrt{-3}}{2}$ V-3 1-1 - V-3. " the same" Symmy pies When two equations have the same symmetries, the methods to solve then are the same. '' order 2'' (=) square coop solves the prosen of " ruler and compass"

how to solve. $\chi^3 + a x^2 + b x + c = 0$. ., 3 xx . - -<5-1----Not s=lvasu by radica() () Abel-heffini, halois. Tym metries solvability. defermine of Physics laws Sym my symmetry

(theories or models)

of physics (aws is More Complicated # of symmetry

usually infinix

"dim" of symme mies 12 Syale Translation reflection V [) trays (ation $\begin{pmatrix} x \\ y \end{pmatrix} \longrightarrow \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 6 \\ 6 \end{pmatrix}$ votation. By angle o reflection, glide reflection - 2+/= 3.

no tation

din = 7

translabon Time

Symmoty

Xlocker

Time translation

(Vans (abion

Rotation - angular momentan

Ellhic-Magnetic Meory "symmety of wave function"

= 1 electric charge.

"Modern Physics" Look for symmething.

(onservation (aws.

Algebra: a way to describe

operations. structures.

Algebraic approach to symmetries.

Group Theory

Defn: (Binary operation) X set.

+: X x X -> X

(a, b) 1-2 a+6

Pefn: (Group) A group G is a set with binary operation a called multiplication (or product) (We usually drop ".", a.6 = a6) The binary operation satisfies DASSOCIATIVITY (a6) (= a (6L) 2 Identity element 3REG, 1.t. fath, ea = ae = a ((atth we prove such e is unique) venent 4 a + 6, 7 5 - 6. 3 Inverse 1.+. abibail. we prove such bis dependently a, and collist a-1) ((aku

Prop: [Unique ouss of identity element)

If C1, P2 are two identity elements, then $e_1 = e_2$ e, ez = e, lby ez seiny
identify alement, (by e, seing isenting element) l1 l2 = l2 S_0 $e_1 = e_7$ 12. lap: (Uniqueness of inverse element) How to phrase such a theorem) Stating what you want to prove is sometimes more Important than priving it

```
tix a E6, if b, c E6 are
   inverses of a, in other words,
                          CA = AC = C.
     ba= ab= e,
  then 6= c.
 1) f :
         (onsider (ba)c = 6 (UC)
          (ba) c = e \cdot c = c
          b (ac) = b · e = b
        =) b= c
         (∠, +)
Lx:
        (Z/nZ.+) residue classes 10,7, 5-14
                       modulo n.
         ( Q, +)
         (Q^{x}=Q) (y, x)
  p prime |\vec{F}_p = 2/p2. (|\vec{F}_p|^2 = |\vec{F}_p| 5°5, x)
```

Non-Ex , (Odd numbers +) (2,0, +) (1123, coss product Try to find examples satisfying 2.3, but not 1. Notation: a, a, a, ... an = ((0,102) az) -- an or any other form = ai((azaz) ax). => No ambignity Associativity or 'well-defined'

There groups are special because the groducts are commutative ab=ba.

This not always the case.

Symmetric group (Not symmetry group) Defn: [n]= {1,2--- bh Sn = Sbijections T: [n] -> (n) S.

T. T = composition oo I. Defn: In other words: r.Z (i) = r(Z(i))

Perp: (Sn, ') is a group.

Before the proof, we intendace some notation.

An element in Sh is also called a permutation and can be writen as

F(1), ... F(n), or (1 ... - n)

for example, h=3. a permutation 1,3,2

1 ... - 2

2 ... - 2

2 ... - 2

3 ... - 1 ... - 2

1 ... - 2

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

1 ... - 3

Permutations are exactly all the maps $\zeta_{1,1}...n'$ to itself that are one-to-one

(Lijective). f(i) = f(j') implies i' = j'. Injective f(i) = f(j') = f(j') = f(j')Such that f(i) = j'

 $\begin{array}{c}
\text{If } (1) \text{ Associationing } (f \cdot g) \cdot h = f(g \cdot h) \\
\underline{(f \cdot g) \cdot h} (i) = (f \cdot g) (h(i)) \\
= f (g(h(i)))
\end{array}$ $f \cdot (g \cdot h) \quad (i) = f((g \cdot h) \quad (i))$ = f(g(h(i))) $=) (f_{2}g)_{0h} = f_{0}(g_{0h})$

(2) / dustify clement. e is the identity map 41,2... ny to itself. e(i) = i $e^{-f(i)} = e(f(i)) = f(i) = e^{-f(i)}$ foe (i) = f(e(i)) = f(i) =) foe=f. (3) Inverse: f: \$1,2.-. 64 -> \$1,2.- 69 f bijerpre. Define f-1: 51,2... 19 -51,2... 19 f'(i) is the unique element j' such they Check f-f-= f-f= e.) from the definition $f^{-1}(i) = j^{-1}$

f(j) = i

$$f(f^{-1}(i)) = i$$

$$= i$$

(olumns of g such that the top

f = (1.3.2.8)g = (2,1.3.8)

$$f = \begin{pmatrix} \begin{pmatrix} 1 & 2 & 3 & k \\ 1 & 1 & 1 & 1 \end{pmatrix} & g = \begin{pmatrix} 1 & 2 & 3 & k \\ 2 & 1 & 3 & k \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & k \\ 2 & 3 & 1 & k \end{pmatrix}$$

$$f = \begin{pmatrix} 1 & 2 & 3 & k \\ 2 & 3 & 1 & k \end{pmatrix}$$

To compute $f = \begin{pmatrix} 2 & 1 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$

$$f \cdot f = \begin{pmatrix} 12 & 34 \\ 3 & 1 & 24 \end{pmatrix}$$

Jof # fof.

Sy i's not commutative ander

composition.